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Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental

variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally

heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD).

Devils persist in regions of long-term infection despite epidemiological model predictions of species’ extinction, suggesting possi-

ble adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic

environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association anal-

yses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil’s geographic range. Pre-disease,

we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes,

suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD

arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes

involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests

swamping by strong selection resulting from the rapid onset of DFTD.

A central goal of molecular ecology is understanding how eco-

logical processes generate and maintain the geographic distri-

bution of adaptive genetic variation. Landscape genomics has

emerged as a popular framework for identifying candidate loci

that underlie local adaptation (Manel et al. 2010; Rellstab et al.

2015; Hoban et al. 2016; Lowry et al 2017; Storfer et al. 2018).

Using genomic-scale data sets, researchers screen for loci that

exhibit patterns of selection across heterogeneous environments

(Haasl & Payseur 2016). One widely used method for test-

ing for statistical associations of allele frequencies of marker
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loci across the genome with environmental variables is genetic-

environmental associations (GEAs) (Rellstab et al. 2015; Whit-

lock & Lotterhos 2015; Francois et al. 2016; Hoban et al. 2016).

GEAs identify significant correlations of allele frequencies

at candidate loci with abiotic environmental variables such as

altitude, rainfall, and temperature. GEAs have been successful,

for example, in identifying loci associated with adaptation to hy-

poxia in high-elevation human populations (Beall 2007, Peng

et al. 2011), stress response in lichen populations along altitudinal

gradients (Dal Grande et al. 2018), and leaf longevity and mor-

phogenesis in response to aridity (Steane et al. 2014). Climatic,

geographic, and fine-scale remote sensing data that explain large

amounts of heterogeneity in the environment are often easily ob-

tained (Rellstab et al. 2015). However, data on biotic factors such

as life-history traits (Sun et al. 2015), community composition

(Harrison et al. 2017), or disease prevalence often involve ex-

tensive fieldwork and are far more difficult and labor-intensive

to collect than abiotic variables. Accordingly, few landscape ge-

nomics studies have tested for the influence of biotic variables on

the spatial distribution of adaptive genetic variation.

Infectious diseases often impose strong selective pressures

on their host and thereby represent key biotic variables increas-

ingly recognized for their severe impacts on natural popula-

tions (summarized in Kozakiewicz et al. 2018, e.g., Biek & Real

2010; Wenzel et al. 2016; Leo et al. 2016; Mackinnon et al.

2016; Eoche-Bosy et al. 2017). Landscape genomic studies of

the disease can help guide management programs, such as captive

breeding designs and reintroductions (Hoban et al. 2016; Hohen-

lohe et al. 2019). Additionally, landscape genomics studies have

been used to elucidate how the landscape influences the distri-

bution and spread of the pathogen (Robinson et al. 2015; Schw-

abl et al. 2017). However, studies disentangling the influence of

pathogen dynamics from that of other abiotic landscape features

have had limited statistical power to date. For example, Wenzel

et al. (2016) tested for correlations between parasite burden and

genetic differentiation across the landscape but did not detect any

statistically significant associations due to stochasticity in the ge-

nomic background created by dispersal. The disease may play

an important role in the distribution of adaptive genetic variation

across the landscape, potentially swamping signatures of local

adaptation to the abiotic environment.

Tasmanian devils (Sarcophilus harrisii) and their transmis-

sible cancer, devil facial tumor disease (DFTD), offer such an op-

portunity. Devils are isolated to the island of Tasmania and have

been sampled across their entire geographic range. Intense mark-

recapture studies and collection of thousands of genetic samples

have been conducted over the past 20 years, both before and after

DFTD arrival across multiple populations. This sampling effort,

in addition to resources such as an assembled genome (Murchi-

son et al. 2012; Patton et al. 2019), provides extensive data to

employ GEAs to test for the relative effects of abiotic environ-

mental factors versus DFTD.

In 1996, the first evidence of DFTD was documented in Mt.

William/Wukalina National Park (McCallum 2008). In just over

two decades, DFTD has spread across the majority of Tasma-

nia with nearly a 100% case fatality rate (Hawkins et al. 2006;

McCallum et al. 2009), and a second independently evolved

clonal transmissible cancer (DFT2) has since emerged (Stamm-

nitz et al. 2018; Pye et al. 2016a). Transmission appears to be

largely frequency-dependent (McCallum et al. 2009; McCallum

2012), with tumors originating on the face or in the oral cavity

and being transferred as allografts (Pearse et al. 2012) through

biting during social interactions (Hamede et al. 2009). DFTD has

a single, clonal Schwann cell origin (Murchison et al. 2010; Sid-

dle et al. 2010) and evades host immune system detection via

downregulation of host major histocompatibility complex (Sid-

dle et al. 2013). Low overall genetic variation in devils resulting

from population bottlenecks that occurred during the last glacial

maximum as well as during extreme El Niño events 3000–5000

years ago (Brüniche-Olsen et al. 2014; Patton et al. 2019) has also

been attributed to high susceptibility to this emerging infectious

disease.

DFTD imposes extremely strong selection as it has caused

local population declines exceeding 90%, and an overall species-

wide decline of 80% (Jones et al. 2004; Lachish et al. 2009;

Lazenby et al. 2018). However, small numbers of devils persist in

areas with long-term infection likely resulting from evolutionary

responses in the Tasmanian devil (Jones et al. 2008; Brüniche-

Olsen et al. 2013; Epstein et al. 2016; Wright et al. 2017). Indeed,

recent work has shown: (1) rapid evolution in genes associated

with immune-related functions across multiple populations (Ep-

stein et al. 2016), (2) sex-biased response in a few large-effect

loci in survival following infection (Margres et al. 2018a), (3) ev-

idence of effective immune response (Pye et al. 2016b), and (4)

cases of spontaneous tumor regression (Pye et al. 2016b; Wright

et al. 2017; Margres et al. 2018b). These studies, however, fo-

cused on relatively small geographic areas.

Here, we estimated allele frequencies in 6886 SNPs both

randomly selected and previously shown to be associated with

DFTD (Epstein et al. 2016) in 3287 devils from seven localities

throughout Tasmania sampled both prior to and following dis-

ease arrival. We investigated four questions about the relative ef-

fects of abiotic environmental variables versus DFTD on the ge-

nomics of adaptation in Tasmanian devil populations: Question

(1) Were there differences in the number of genetic clusters de-

tected post-DFTD arrival? Question (2) Pre-DFTD arrival, what

were the genetic-environmental associations of devil populations

with abiotic variables (i.e., climatic variables, elevation, vegeta-

tion cover)? Question (3) Were statistical signals of local adapta-

tion to abiotic variables detected pre-disease weakened following
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Figure 1. Map of Tasmania with each sampling location. The red

lines and the corresponding years indicate the first year that dis-

ease was detected in these locations.

the arrival of DFTD? Question (4) Has genetic variation declined

following disease arrival? Lack of significant variation in popu-

lation structure (1) and genetic diversity (4) following disease ar-

rival may suggest directional selection led to changes in allele fre-

quencies at candidate loci rather than genetic drift owing to small

surviving population sizes. We predicted that the DFTD epidemic

would result in swamping of prior genetic-environmental associ-

ations with the abiotic environment (3 and 4).

Methods
TRAPPING AND SAMPLING DATA

Field data and ear biopsy samples from 3287 Tasmanian devils

were collected from seven different locations across their geo-

graphic range in Tasmania (Fig. 1), pre and post-DFTD, between

1999 and 2014 (Table 1). These geographic sampling locations

were selected to maximize the extent of abiotic environmen-

tal heterogeneity and variation in disease prevalence across the

species’ geographic range. On the eastern seaboard, coastal popu-

lations occupying narrow peninsulas were characterized by lower

seasonal rainfall and moderate human activity (Freycinet and

Forestier). In contrast, the coastal heathlands and dry grasslands

of Mount William National Park and the coastal wetlands and la-

goons that dominate the Narawntapu National Park in northeast-

ern Tasmania experienced wetter climates. Inland, high elevation,

habitats had greater annual temperature ranges and were heavily

influenced by anthropogenic disturbance including increased sur-

face area of sealed roads (Fentonbury) and commercial forestry

(West Pencil Pine). While both Woolnorth and West Pencil Pine

were dominated by heavy rainfall, Woolnorth had minimal hu-

man development and was primarily characterized by dry, coastal

Eucalypt forests common along the northwest coast.

Five of these locations became infected with DFTD dur-

ing the study; one location remained disease-free, and one lo-

cation was already infected at the beginning of the study (Fig. 1,

Table 1). We considered the first year of disease arrival as pre-

disease in our analyses, as the generation time for Tasmanian

devils is approximately two years. Tasmanian devils were trapped

using standard protocols (Hamede et al. 2015) involving custom-

built polypropylene pipe traps 30 cm in diameter (Hawkins et al.

2006). These traps were set and baited with meat for ten consecu-

tive trapping nights. In each 25 km2 trapping site, at least 40 traps

were set. Traps were checked daily, commencing at dawn. Each

individual was permanently marked upon first capture with a mi-

crochip transponder (Allflex NZ Ltd, Palmerstone North, New

Zealand). Additional specifics regarding field protocols, samples

taken, and phenotypic data recorded can be found in Hawkins

et al. (2006), Hamede et al. (2015), and Lazenby et al. (2018).

Animal use was approved under IACUC protocol ASAF#04392

at Washington State University.

OVERVIEW OF RAD-CAPTURE ARRAY DEVELOPMENT

We used 90,000 Restriction-site Associated DNA sequencing

(RAD-seq) loci generated from 430 individuals sampled across

39 sampling localities using the PstI restriction enzyme (Epstein

et al. 2016; Hendricks et al. 2017) to develop a RAD-capture

Table 1. Information for samples collected from each population (the acronyms for the population included in parentheses). Values

listed include the number of ear biopsy samples collected per population prior to and post-disease arrival, the years the populations

were sampled, and the date that DFTD was first detected in that population.

Populations Samples pre-disease Samples post-disease Years samples collected Date of DFTD infection

Fentonbury (FEN) 97 157 2004–2009 2005
Forestier (FOR) 137 382 2004–2010,2012–2013 2004
Freycinet (FRY) 511 562 1999–2014 2001
Mt William (MTW) N/A 155 1999–2014 1996
Narawntapu (NAR) 258 153 1999–2000, 2003–2012 2007
West Pencil Pine (WPP) 55 357 2006–2014 2006
Woolnorth (WOO) 491 N/A 2006–2010, 2012 N/A
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probe set (Ali et al. 2016). The details of the sample collection,

preparation, and data processing of these original RAD loci is

described in Epstein et al. (2016). Using these data, baits were

designed to target a total of 15,898 RAD loci. This array in-

cluded three categories of RAD loci (with some overlap among

categories): (i) 7108 loci spread widely across the genome that

were genotyped in more than half of the individuals, had ≤3

non-singleton SNPs, and had a minor allele frequency (MAF)

≥0.05; (ii) 6315 loci based on immune function, restricted to

non-singleton SNPs genotyped in ≥1/3 of the individuals, in and

within 50 kb of an immune-related gene; (iii) 3316 loci show-

ing preliminary evidence of association with DFTD susceptibility

with ≤5 non-singleton SNPs. Each RAD-capture locus was ≥20

kb away from other targeted loci to minimize potentially con-

founding effects of linkage disequilibrium. Additional details of

the creation of the RAD-capture probe set have been summarized

in Margres et al. (2018a).

DATA QUALITY AND FILTERING

Libraries produced from the RAD-capture arrays were con-

structed using 3,568 individuals from the seven distinct geo-

graphical locations across Tasmania (Fig. 1). Libraries were then

sequenced on a total of 12 lanes of an Illumina platform (5 lanes

on NextSeq at the University of Oregon Genomics & Cell Char-

acterization Core Facility; seven lanes on HiSeq 4000 at the QB3

Vincent J. Coates Genomics Sequencing Laboratory at the Uni-

versity of California, Berkeley). We de-multiplexed paired-end

150 bp reads, removed low quality reads, and removed poten-

tial PCR/optical duplicates using the clone_filter program (Stacks

v1.21; Catchen et al. 2013). We then used Bowtie2 (Langmead &

Salzberg 2012) to align reads to the reference genome (Murchi-

son et al. 2012; Devil_ref v7.0 GCA_00189315.1 downloaded

from Ensembl May 2017, N50 20.13 kilobases for contigs and

1847.19 kilobases for supercontigs). We required the entire read

to align from one end to the other without trimming (–end-to-

end) with sensitive and -X 900 mapping options. With the result-

ing bam files, we created individual GVCF files using the option

to emit all sites in the aligned regions with HaplotypeCaller from

GATK (McKenna et al. 2010). All GVCF files were analyzed to-

gether using the option GenotypeGVCFs that re-genotyped and

re-annotated the merged records. We selected SNPs using the Se-

lectVariants option and filtered using the following parameters:

QD < 2.0 (variant quality score normalized by allele depth), FS

> 60.0 (estimated strand bias using Fisher’s exact test), MQ <

40.0 (root mean square of the mapping quality of reads across

all samples), MQRankSum < −12.5 (rank-sum test for map-

ping qualities of reference versus alternative reads), and Read-

PosRankSum < −8 (rank-sum test for relative positioning of ref-

erence versus alternative alleles within reads). Using VCFtools

(Danecek et al. 2011), additional filtering was performed to re-

move non-biallelic SNPs, indels, those with a minor allele fre-

quency <0.05, and those missing data at more than 50% of the

individuals genotyped and 40% of the sites across all individ-

uals. To parse out the genetic-environmental associations of abi-

otic factors from disease, samples were divided into pre and post-

disease subsets prior to analyses. After filtering, we retained 3287

Tasmanian devils (1521 before and 1765 after DFTD) and 6886

SNPs (Table 1). Post-filtering, we retained (i) 3084 SNPs (2912

unique SNPs) in RAD loci targeted for their high genotyping rate

and distribution across the genome; (ii) 250 SNPs (203 unique

SNPs) in RAD loci targeted for immune function; (iii) 913 SNPs

(757 unique SNPs) in RAD loci targeted due to preliminary ev-

idence of association with DFTD; and (iv) 2827 off-target SNPs

widely distributed across the genome. There were 32 overlapping

SNPs between categories (i) and (ii), 141 SNPs overlapping be-

tween categories (i) and (iii), and 16 SNPs overlapping between

categories (ii) and (iii). However, because there was an overlap of

non-unique SNPs between the overlapping categories, the num-

bers do not sum to the number total number of SNPs in each

category.

ANALYSES OF POPULATION STRUCTURE

To examine the underlying population structure in our dataset,

both pre- and post-disease, we used fastSTRUCTURE (Alexan-

der, Novembre & Lange 2009). fastSTRUCTURE is an algorithm

that estimates ancestry proportions using a variational Bayesian

framework to infer population structure and assign individuals

to genetic clusters. We ran both the pre- and post-disease data

sets with the number of genetic clusters (K) set from 1 to 18.

Genetic relationships amongst sampled populations were also

evaluated using discriminant analysis of principal components

(DAPC) analysis (Jombart et al. 2010) implemented in the Ade-

genet package in R (Jombart 2008). This method transforms

genotypic data into principal components and then uses discrim-

inant analysis to maximize between-group genetic variation and

minimize within-group variation. To determine the optimal num-

ber of genetic clusters, we used the k-means clustering algorithm

for increasing values of K from 1 to 20. We selected the optimal

K value by selecting the visual “elbow” in the Bayesian informa-

tion criterion (BIC) score, which is the lowest BIC value that also

minimizes the number of components or genetic clusters retained.

GENETIC DIVERSITY

To identify signals of a potential genetic bottleneck, we tested

for changes in genetic diversity pre- and post-disease emergence.

We used VCFtools (Danecek et al. 2011) to calculate Weir and

Cockerham’s estimator of FST (ϴ; Weir and Cockerham 1984)

for all pairwise comparisons and all pre-post disease population

comparisons. To gauge whether populations had significantly

different FST values, we bootstrapped 95% confidence intervals
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for 10,000 iterations and tested whether the confidence intervals

bounded zero. Additionally, we calculated estimated heterozy-

gosity (Nei and Li 1979) and Tajima’s D (Tajima 1989) for each

population before and after disease arrival to estimate standing

levels of genetic variation (Danecek et al. 2011). Each metric was

calculated by taking the average of each non-overlapping win-

dows of 10 kilobases (kb) per population pre and post-disease.

We also tested for changes in inbreeding (FIS) using the R pack-

age Adegenet (Jombart 2008) for each population pre and post-

disease. Finally, we tested for changes in effective population size

calculated from estimates of linkage disequilibrium among SNPs

in NeEstimator v2 (Do et al. 2014).

ABIOTIC ENVIRONMENTAL VARIABLES

We used ArcGIS 10 to plot the location of every sampled Tasma-

nian devil. Pemberton et al. (1990) found that Tasmanian devils

typically have a home range of 10–20 km2, with devils often hav-

ing overlapping home ranges. A trapping area of 25 km2 thus

reflects an area of overlapping home ranges for devils that has

been consistently used by the Tasmanian Department of Primary

Industries, Parks, Water and Environment, Save the Tasmanian

Devils project, University of Tasmania and other researchers for

over two decades and has supported dozens of publications. Over

the course of the 15 years (1999–2014; Table 1), however, there

was some variation in the shape of the trapping grids at the sam-

pling sites due to changes in land use and permissions. To account

for this variation, we located the centroid of each sampling area

using the calculate geometry tool in ArcGIS 10. We then drew a

25 km2 ellipse around each centroid to represent the total trap-

ping area for each sampling location and extracted environmen-

tal data for each location. Although the Freycinet and Forestier

sites were larger than other sampling sites, the centroids were

in the middle of peninsulas, likely making them representatives

of those sites. We collected abiotic environmental data describ-

ing variation in climate, elevation, vegetation, human develop-

ment and hydrological features for this study (Table S1). The data

layers for each of the climatic and vegetation variables for each

site were collected and aggregated by WorldClim between 1970–

2000 at 1-km spatial resolution (www.worldclim.org; Fick &

Hijmans 2017). Elevation values were similarly calculated by ex-

trapolating the centroid of the 25 km2 ellipses for each site; eleva-

tion data were collected and aggregated by Geoscience Australia

between 2001–2015 at 5 m spatial resolution (www.ga.gov; Geo-

science Australia 2015). The centroids for each of the climatic,

elevational, and vegetative variables for each sampling location

were used in downstream analyses. The only environmental vari-

ables that were not summarized as centroids were the length of

sealed roads, length of public roads, and the total surface area

of water. The data layers for these three variables were gener-

ated by the Land Information System Tasmanian between 2013

and 2016 at 25–500 m spatial accuracy (www.thelist.tas.gov.au).

Sealed and public road lengths were calculated by cumulatively

summing the total length of the sealed roads in the entire 25 km2

ellipse for each sampling location. The total surface area of wa-

ter was calculated by adding the total surface area of hydrolog-

ical features we hypothesized would be accessible to Tasmanian

devils including “natural or dammed freshwater,” “stream,” and

“watercourse” hydrological features. Table S1 includes all of the

18 abiotic environmental variables analyzed and the location of

each centroid.

We extracted the values for each environmental variable at

five randomly chosen locations within the ellipse generated for

each trapping area to test whether there was significant hetero-

geneity for any of the environmental variables across the trap-

ping area of any particular site. Using the calculate statistics

tools in ArcGIS 10, we calculated the mean, standard devia-

tion, and 95% confidence intervals for each of the environmen-

tal variables within each site. If the environmental values fell

within the 95% confidence interval of the randomly selected

points at each site, we deemed the environmental value as an ad-

equate representation for that environmental variable site-wide

(Table S2).

To estimate collinearity among environmental variables (Ta-

ble S1), we conducted a principal component analysis (PCA) us-

ing the prcomp package in R including the environmental values

for each of our seven sampling localities. The top two abiotic

environmental variables that explained the greatest proportion of

the variance in each of the first six principal components in the

PCA were used as explanatory variables in the subsequent GEA

analyses. We did not include the seventh principal component as

the amount of variation in the data explained by this component

was negligible (<0.001). To ensure that environmental variables

were not correlated, we conducted paired correlative tests using

Spearman’s ρ). Significantly correlated environmental variables

were excluded (p ≤ 0.01).

BIOTIC ENVIRONMENTAL VARIABLES

To estimate disease prevalence within populations, we used trap-

ping records compiled in a database provided by collaborators at

the University of Tasmania and the Department of Primary Indus-

tries, Parks, Water and Environment from 1999 to 2014 from the

six infected populations (McCallum et al. 2009; Hamede at al.

2009, 2012, 2013, 2015; Lachish et al. 2009). Field records con-

tained data regarding every unique trapping encounter as well as

phenotypic data for each devil. Likelihood of a single devil be-

ing infected with DFTD is recorded for devils in the field us-

ing a scale of 1–5 (Hawkins et al. 2006). We calculated disease

prevalence using the total number of unique devils trapped with a

high probability of being infected divided (DFTD score ≥ 3) by

the number of unique devils captured alive that year. Infection
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probability scores were derived in the field based on visual

infection status from 1 (no apparent signs of DFTD) to 3 (wounds

and other irregularities present) to 4 (tumors present) (Lachish

et al. 2007). In our GEAs, we averaged the annual disease preva-

lence values across years 2–4 after DFTD was confirmed at a

particular sampling location. We selected these years instead of

using the first year of infection of DFTD because there was vari-

ation in estimates of prevalence during the first year of DFTD

detection and no guarantee that this truly was the first year of

infection.

GENETIC-ENVIRONMENTAL ASSOCIATION (GEA)

ANALYSES

We tested correlations of allele frequencies with abiotic and bi-

otic environmental variables across the seven study locations us-

ing latent factor mixed models (LEA; Frichot & Francois 2015)

and Bayenv2 (Gunther and Coop 2013). The R package for land-

scape and ecological association studies (LEAs) uses latent fac-

tors, analogous to principal components in a PCA, to account

for background population structure (Frichot & Francois 2015).

These latent factors serve as random effects in a linear model

that tests for correlations between environmental variables and

genetic variation (Frichot & Francois 2015). The number of pop-

ulations sampled was used for the number of latent factors in

LEA. Bayenv2 uses allelic data to generate a variance-covariance

matrix, or kinship matrix, to estimate the neutral or null model for

underlying demographic structure (Coop et al. 2010; Gunther and

Coop 2013). Spearman’s ρ statistics were then calculated to pro-

vide non-parametric rankings of the strength of the association of

each genotype with each environmental variable compared to the

null distribution described by the kinship matrix alone (Gunther

and Coop 2013). The non-parametric Spearman’s rank correla-

tion coefficients have been shown to be more powerful in de-

scribing genetic-environmental relationships if there are extreme

outliers (Whitlock and Lotterhos 2015; Rellstab et al. 2015).

CANDIDATE GENE IDENTIFICATION

Although each of the landscape genomic methods listed above

detects GEAs, each program has been shown to vary in true-

positive detection rate given sampling scheme, underlying de-

mography, and population structure (Lotterhos and Whitlock

2014; Rellstab et al. 2015; Hoban et al. 2016). To reduce the

false-positive rate without sacrificing statistical power, we used

MINOTAUR (Lotterhos et al., 2017; Verity et al. 2017) to identify

putative loci under selection. MINOTAUR takes the test statis-

tic output from each of the GEAs and identifies the top outliers

in multi-dimensional space; here, we used the Mahalanobis dis-

tance metric to ordinate our outliers. We selected this distance

metric as it has been shown to have high statistical power on

simulated genomic data sets (Verity et al. 2017) and because

our data followed a parametric distribution. We chose our final

set of candidate SNPs by selecting the top 1% of loci that had

the largest Mahalanobis distance for each environmental variable.

Thus, we performed seventeen separate MINOTAUR runs: eight

for the eight abiotic environmental variables tested pre-DFTD ar-

rival and nine, including the eight abiotic environmental variables

and a single biotic variable, post-DFTD arrival.

We then used bedtools (Quinlan and Hall 2010) to identify

genes within one kb of each candidate SNP in the devil reference

genome (Murchison et al. 2010). Protein-coding genes within

these windows were included in the list of candidate genes. Gene

annotations were retrieved from the ENSEMBL database (Akey

et al. 2002), gene IDs were derived from the NCBI GenBank

database (Wheeler et al. 2007), and descriptions of putative func-

tion and gene ontologies were gathered from www.genecards.org

(Fishilevich et al. 2017) and the Gene Ontology (GO) Consortium

(Ashburner et al. 2000). We then tested for enrichment of GO

terms in our candidate gene list using the R package SNP2GO

(Szkiba et al. 2014). SNP2GO tests for over-representation of

GO terms associated with genes within a specified region us-

ing Fisher’s exact test and corrects for multiple testing using

the Benjamini-Hochberg and Yosef (1995) false-discovery rate

(FDR). We ran this program on the pre- and post-disease candi-

date sets separately and used all genes within one kb of the orig-

inal RAD-capture data set as our reference set. Enriched terms

were those with an FDR ≤ 0.05.

FISHER’S EXACT TEST

To determine if GEAs detected pre-DFTD remained post-DFTD

arrival, we calculated the change in the MINOTAUR rank of each

candidate locus following disease arrival. We ranked loci by Ma-

halanobis distance and compared the rank of the pre-DFTD can-

didate loci to post-disease arrival for each of the eight abiotic en-

vironmental variables. To determine whether a greater proportion

of loci detected pre-disease had reduced MINOTAUR rankings

post-disease arrival than we would expect by random chance, we

conducted Fisher’s exact tests using an α = 0.05. If we detected

a significantly higher proportion of models in which the MINO-

TAUR rankings were lower post-disease than pre-disease, then

we considered the molecular signal of the genetic-environmental

association to be swamped by disease.

Results
POPULATION STRUCTURE AND GENETIC DIVERSITY

Our analyses generally supported K = 6 both pre and post-DFTD

arrival reflecting the six populations sampled during each time

period. However, there was uncertainty of the optimal K-value

in fastSTRUCTURE. Using the “chooseK” python script

6 EVOLUTION 2020
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A

C D

B

Figure 2. Population assignments computed by fastSTRUCTURE and DAPC for samples collected prior to (A and C) and post (B and D)

DFTD arrival. (A and B) Each vertical bar in the fastSTRUCTURE plots represents a single individual sampled at one of the sampling locations

which are abbreviated along the x-axis. Within population clusters, individuals are arranged by most common ancestry proportion. K =
6 is plotted here. Each color in all plots represents a distinct genetic cluster. (C and D) DAPC scatterplots show the first two principal

components for K = 6.

recommended in fastSTRUCTURE, K = 9 (Fig. S1A) received

the greatest support pre-DFTD and K = 8 post-DFTD (Fig. S1B).

However, in both cases, the difference in the marginal likeli-

hood between K = 4 and the selected K was very small (pre-

DFTD �Marginal Likelihood = 0.003, post-DFTD �Marginal

Likelihood = 0.0032; Figs. S1 and 2). For visual comparison,

we also plotted K = 6 pre-DFTD (Fig. 2A) and post-DFTD

(Fig. 2B), which reflects the number of populations sampled.

The K value for DAPC that minimized the BIC, as well as the

number of components included, was K = 6 both pre-DFTD

(Fig. 2C) and post-DFTD (Fig. 2D). Pairwise FST values pro-

duced using Weir and Cockerham’s estimator would also support

K = 6 as all bootstrapped confidence intervals for population

comparisons did not bound zero (Table 2). There were no sub-

stantial differences between estimated heterozygosity, Tajima’s

D, Nei’s FIS or effective population size (Ne) (Table S3) for

any of the populations after DFTD arrived, suggesting there

were no significant changes in genetic diversity following disease

arrival.

ENVIRONMENTAL VARIABLES

We initially considered 18 abiotic environmental variables (Ta-

ble S1) that may be relevant to the distribution of genetic vari-

ation across the devil’s geographic range. Eight of these 18

variables (Table 3) explained a significant proportion (>0.99)

of the variance in the environmental data as summarized in

the top principal components (Table S4). Mean annual tem-

perature and elevation were significantly correlated (mean an-

nual = Spearman’s ρ = −0.964, p = 0.0028). We retained

both of these environmental variables because we know they

have a strong effect on gene flow in devil populations (Stor-

fer et al. 2017). There were no statistically significant dif-

ferences between the environmental values or any of the five

randomly selected points for any of the environmental vari-

ables within each of the sampling locations (Table S2), indicat-

ing a lack of significant within-site heterogeneity. These eight

abiotic environmental variables were subsequently used in the

GEAs.

EVOLUTION 2020 7
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Table 2. The mean pairwise FST values ± 95% confidence intervals generated by resampling by bootstrapping 10,000 iterations. The

values below the diagonal are pairwise comparisons for samples collected pre-disease and those above the diagonal are the same for

post-disease. All pairwise comparisons did not bound zero and therefore were statistically significantly different from zero.

Post-DFTD

Pr
e-
D
FT
D

LANDSCAPE GENOMICS ANALYSES

Combining GEAs across all abiotic variables, we identified 365

unique SNPs pre-DFTD and 483 unique loci post-DFTD, of

which 56 SNPs overlapped temporally, that received the great-

est support from MINOTAUR as candidate loci. We identified

candidate genes based on linkage disequilibrium (within one kb)

to the unique loci, which resulted in 71 genes pre-disease (Table

S5) and 105 genes post-disease (Table S6); twenty-four of those

genes overlapped (Fig. S3, Table S5). Of the 483 unique loci

post-DFTD, 59 unique loci were associated with disease preva-

lence. Of these 59 loci associated with disease prevalence, eight

of these loci were also detected pre-disease arrival. Within one kb

of these 59 SNPs, there were 13 annotated genes, two of which

overlapped temporally with the pre-disease candidate set.

CANDIDATE GENE IDENTIFICATION FOR SELECTION

BY THE ABIOTIC ENVIRONMENT

Mean annual temperature and annual temperature range were the

two most common climatic variables significantly correlated with

the allele frequencies of candidate SNPs among devil populations

pre-disease arrival (Table S7). Twenty-six of the top 71 candidate

genes pre-disease were associated with at least one of these two

environmental variables and broadly associated with response to

protein binding and response to stress (Tables S5 and S7). Specif-

ically, genes associated with annual temperature range had GOs

including cellular response to stress and RNA transport and pro-

cessing. Mean annual temperature, in contrast, was correlated

with genes with intracellular protein transport and protein local-

ization GOs.

In addition to climatic variables, surface area of bodies of

water, elevation, and vegetation index explained a large pro-

portion of the observed variance in the abiotic environment

across our seven sampling sites (Table S2). Surface area of

bodies of water was correlated with 18 of the candidate genes

pre-DFTD arrival that were associated with NOTCH signaling

pathways and regulation of transcription by RNA-polymerase

(Tables S5 and S7). Elevation was correlated with seven of

the candidate genes with ion binding and oxidoreductase activ-

ity functions. Vegetation index was correlated with allele fre-

quencies of 13 of the candidate genes that had GOs includ-

ing transcription and cellular protein binding. Although mean

elevation and mean annual temperature among sampling loca-

tions were found to be correlated, there were no shared asso-

ciations between these two variables and any candidate genes

(Table S7).

In our abiotic GEAs post-disease arrival, annual temperature

range, mean annual temperature, and vegetation index were the

top environmental variables most frequently associated with can-

didate SNPs (Tables S6 and S8). Similar to pre-DFTD, GOs for

genes associated with these two temperature variables included

a cellular response to stimulus, RNA processing and regulation,

and ion binding. In contrast to pre-DFTD, mean annual temper-

ature and annual temperature range were associated with genes

with cell signaling, immune response, and apoptotic processes.

Vegetation index was associated with 17 of the candidate genes
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post-DFTD with GOs including cellular differentiation and cell

signaling pathways (Tables S6 and S8).

There was no significant enrichment of any GO category of

our candidates (pre-disease p = 0.344; post-disease p = 0.297);

there were commonalities in the putative functions of candidate

genes pre- versus post-disease including regulation of transcrip-

tion and translation and cellular response to external stress (Ta-

bles S5 and S6).

CANDIDATE GENE IDENTIFICATION FOR SELECTION

BY THE BIOTIC ENVIRONMENT

Disease prevalence was significantly correlated with divergent al-

lele frequencies among sampled devil populations (Tables S8 and

S9). Thirteen of the 81 candidate genes detected uniquely post-

DFTD arrival were associated with disease-prevalence (Tables S8

and S9). The associated GOs for these 13 genes included cell-

cycle regulation, regulation of cell proliferation, and immune re-

sponse (Table S6). All 13 genes were also associated with abiotic

environmental variables. Genes TBXAS1 and FGGY were found

in both the pre and post-DFTD candidate gene lists and associ-

ated with GOs including oxidoreductase activity and metabolism

(Table S5).

FISHER’S EXACT TEST FOR DISEASE SWAMPING

Putative GEAs found pre-DFTD were consistently undetected

post-DFTD arrival (Tables S5 and S6). Using Fisher’s exact tests,

fewer pre-DFTD candidate loci were detected post-DFTD arrival

than expected by random chance for each MINOTAUR analysis

for each of the eight abiotic environmental variables (Fig. 3; Fig.

S4). For example, we only detected three of the 69 putative pre-

DFTD candidate loci using MINOTAUR post-DFTD arrival for

genetic associations with mean annual temperature across sam-

pled populations (Fisher’s Exact Test Odd’s ratio = 23.211, p <

0.001; Fig. 3).

Twenty-four of the original 71 candidate genes detected pre-

disease overlapped with the 105 candidate genes post-disease ar-

rival (Table S5). Four were associated with at least one of the

same environmental variables post-disease arrival as pre-disease,

and 20 were correlated with different variables (Table 9). Two

of the variants linked with TBXAS1 and FGGY were found to be

associated with disease prevalence post-disease arrival, but abi-

otic environmental variables pre-disease arrival. For example, the

FGGY gene was originally associated with isothermality prior to

disease arrival, but disease prevalence post-arrival. Putative func-

tions of FGGY include carbohydrate phosphorylation and neural

cell homeostasis (Singh et al. 2017; Dunckley et al. 2007; Ta-

ble S5). Similarly, TBXAS1, which is putatively involved in ox-

idoreductase activity (Ullrich & Brugger 1994), was associated

with vegetation index and mean annual temperature pre-disease

EVOLUTION 2020 9
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A B

Figure 3. Mahalanobis distances from MINOTAUR for each SNP pre-DFTD arrival (left plot) and post-DFTD arrival (right plot) for GEAs

with mean annual temperature. SNPs are ordered by position along the chromosomes. The top 1% of loci with the largest Mahalanobis

distance values pre-DFTD are indicated in red. (b) Post-hoc analyses found that a significantly greater number of candidate loci detected

pre-DFTD arrival were not detected post-DFTD arrival. This trend was detected consistently across all eight of the abiotic environmental

variables tested in genetic-environmental association analyses (output from the remaining seven variables can be found in Fig. S2).

arrival but was more strongly correlated with disease prevalence

following disease arrival (Tables S5 and S9).

Discussion
Here, we showed Tasmanian devils are more genetically

structured across Tasmania than previously documented

(Miller et al. 2011; Brüniche-Olsen et al. 2014; Hendricks et al.

2017) thereby creating conditions that favor local adaptation.

Indeed, GEAs showed signatures of selection across popula-

tions, suggestive of adaptation to local abiotic factors prior to

disease arrival. Mean annual temperature and annual temperature

range were abiotic variables most frequently associated with

candidate genes (Xu et al. 2017), and these abiotic factors have

been established as important for devil habitat use (Jones and

Rose 1996; Jones and Barmuta 2000). Surface area of bodies

of water, elevation, and vegetation index were also associated

with candidate genes and correlated with the largest amount of

geographic heterogeneity across the landscape (Zhao et al. 2014;

Schweizer et al. 2016; Mukherjee et al. 2019). Nonetheless, most

of the candidate genes detected prior to disease arrival were not

detected post-DFTD emergence, reflecting the strong selection

imposed by DFTD. Instead, GEAs showed evidence of signifi-

cant correlations of disease prevalence with allele frequencies of

several SNPs after disease arrival functionally related to immune

response, apoptosis, and tumor regression. Taken together, these

results suggest that DFTD swamps molecular signatures of local

adaptation to abiotic variables. In contrast to previous findings

(Brüniche-Olsen et al. 2016) and despite large declines in census

population size across all diseased populations, no substantial

changes in genetic diversity or effective population size were de-

tected pre- versus post-disease, suggesting the detected patterns

were likely not the result of genetic drift.

We found conflicting results among our demographic anal-

yses of our sampled populations. Similar to previous studies,

we detected admixture between several of the seven sampling

locations using fastSTRUCTURE (Fig. 2A), which showed

an optimal K value between 4 and 9. However, using DAPC

(Fig. 2B), we detected distinct genetic clusters among the

sampling locations, regardless of disease presence. Pairwise

population FST calculations were all significantly greater than

zero, indicating significant population differentiation between

all populations sampled (Table 2). Regardless of the analysis

employed, we identified six genetic clusters throughout the

study area, representing greater amounts of genetic structure

than previously detected. Two previous studies found high levels

of admixture between two genetic clusters separating eastern

and western Tasmania (Brüniche-Olsen et al. 2014; Hendricks

et al. 2017), while another, based on mtDNA genomes, sug-

gested three genetic clusters (Northwest, East, and Central;

Miller et al. 2011). Our results differed from the previous work

because we included much larger sample sizes and numbers

of loci, which likely increased our power to detect population

structure.
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Despite extensive, range-wide population declines, we found

no evidence for loss of genetic diversity following disease ar-

rival. Devil populations had low levels of heterozygosity across

the species’ geographic range, regardless of whether DFTD was

present (Table S3), consistent with findings from previous stud-

ies examining levels of genetic variation among populations pre-

DFTD (Jones et al. 2004; Brüniche-Olsen et al. 2014; Hendricks

et al. 2017). While there was population genetic differentiation

(FST) between sampled populations, there was little difference

in inbreeding coefficient (FIS) among populations pre- versus

post-disease arrival. Lack of a significant change in the posi-

tive Tajima’s D values across populations following disease ar-

rival (Table S3) also suggests maintenance of standing genetic

variation even after substantial population declines. One pos-

sibility for the lack of detectable changes in genetic diversity

would be that simply not enough time has passed since the bot-

tleneck. If we take into account the increased precocial breed-

ing in diseased populations, which reduces the generation time

of females from 2 to 3 years prior to disease outbreak to 1.5–

2 years post-disease (Jones et al. 2008), the maximum number

of generations in our data set since disease arrival would be

in Freycinet for 8–9 generations (see Table 1; 2–9 generations

across all populations). Detection of significant changes in ge-

netic diversity requires substantial reduction in effective popula-

tion size for several generations (Luikart et al. 2010). Following

DFTD outbreak, devil populations typically decline by 90% af-

ter 5–6 years. This time lag, coupled with the short timescale,

perhaps resulted in low power to detect changes in genetic

diversity.

The abiotic environmental variables used in our GEAs have

been shown to be important determinants of devil distribution

(Rounsevell et al. 1991; Jones and Rose 1996; Jones and Bar-

muta 2000). Devils are distributed throughout the diverse habi-

tats of Tasmania, but their core distribution comprises areas of

low to medium rainfall which are dominated by dry, open Euca-

lypt forest and coastal shrubland. Devils use varying vegetation

types across the environment for different functions. Devils pre-

fer a clear understory for movement, forest-grassland edges for

hunting, and generally avoid structurally complex vegetation and

landscape features, such as rocky areas and steep slopes (Jones

and Rose 1996; Jones and Barmuta 2000). Candidate loci linked

to the CUX1 gene were strongly associated with vegetation index

in devils, especially in heavily forested populations such as WPP

(Table S7). CUX1, which is putatively involved in transcription

regulation (Sansregret & Alain 2008) and limb development in

morphogenesis (Lizarraga et al. 2002), has been detected in mam-

malian systems as a candidate for adaptation to environments

with a complex understory (Schweizer et al. 2016; Mukherjee

et al. 2019). Differential expression of this gene in muscle tissue

of the bovine species Bos frontalis relative to domestic cattle was

suggested to assist in reducing energetics required for navigating

complex, hilly environments in India (Mukherjee et al. 2019).

Significant genetic variation among devil populations was

also shown to be associated with the total surface area of bodies

of fresh and marine water between sampling sites. A previous

transcriptomics studies of Tasmanian devil populations showed

significant enrichment of differential expression of pre-disease

candidate genes associated with environmental variation between

coastal and inland populations (Fraik et al. 2019). Strong genetic-

environmental associations across devil populations throughout

their heterogeneous geographic range provide evidence for the

presence of local adaptive genetic variation.

Although we found no significant enrichment for any GO

category in the 71 genes identified in strong linkage disequilib-

rium with the top 1% of SNPs pre-DFTD, 21 of the genes were

putatively involved in the cellular response to the stimulus, and

regulation of transcription and RNA polymerase II (Table S5).

Climatic variables including mean annual temperature, annual

temperature range, and isothermality were all important in de-

scribing observed genetic variation across the devil geographic

range.

Following the arrival of DFTD, both the number of loci and

proportion of variation in the allele frequencies of the pre-disease

candidate loci explained by the abiotic environment were signif-

icantly reduced. The ANKYM2 gene, for example, was strongly

correlated with mean annual temperature prior to disease arrival

(pre-disease, MINOTAUR rank = 36), but the strength of the

genetic-environmental association significantly decreased post-

disease arrival and it was no longer detected as a candidate locus

(post-disease, MINOTAUR rank = 2696). Only 24 of the 71 can-

didate genes detected pre-disease were included in the 105 genes

detected post-disease, with only one gene, ARPC2 (Actin related

protein 2/3 Complex Subunit 2), uniquely correlated with the

same variable prior to disease arrival. FGGY, for example, was

strongly correlated with mean annual temperature prior to dis-

ease arrival (pre-disease, Pearson’s correlate = −0.745, MINO-

TAUR rank = 25). Post-disease arrival, the strength of this re-

lationship significantly decreased (post-disease, Pearson’s corre-

late = −0.082, MINOTAUR rank = 6615), and the SNP linked

to this gene was more strongly correlated with disease prevalence

(post-disease, MINOTAUR rank = 59). These discordant patterns

of association of candidate loci with environmental variables pre-

compared to post-disease arrival may possibly be explained by

pleiotropy or loss of association due to DFTD.

We detected 105 candidate genes post-disease arrival as-

sociated with both abiotic environmental variables and/or dis-

ease prevalence. Although there was no significant enrichment

of any GO category, most genes associated with abiotic vari-

ables had stress response GOs, whereas post-disease many genes

had GOs involved in cellular processes including apoptosis, cell
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differentiation and cell development, similar to what has been

previously detected (Epstein et al. 2016; Margres et al. 2018a;

Frampton et al. 2018). Genes involved in apoptosis detected in

our GEAs, including DNAJA3 in the heat shock protein family,

have also been previously identified in DFTD literature as can-

didates for anticancer vaccines (Tovar et al. 2018) as well as

for their putative involvement in immunogenicity (Graner et al.

2000) and tumor suppression (Shinagawa et al. 2008). Function-

ally similar to PAX3, a gene associated with apoptosis and angio-

genesis (Asher et al. 1996) and devil tumor regression detected

in previous studies (Wright et al. 2017), we detected genes in-

cluding FLCN and BMPER post-DFTD arrival (Qi et al. 2009).

We also identified MGLL and TLR6 in our post-DFTD candidate

list that are involved in the inflammatory response (Epstein et al

2016; Margres et al. 2018a).

The identification of candidate genes putatively involved

in immune response (e.g., RFN126 and IL9R), tumor suppres-

sion (e.g., DMBT1, FLCN, and ITFG1), signal transduction (e.g.

ARHGEF37 and PPP1R12B) and cell-cycle regulation (e.g. TK2)

associated with disease prevalence post-DFTD arrival provide ev-

idence that disease may have had a strong influence on devil pop-

ulations (Mollenhauer et al. 2003; Tsapogas et al. 2003; Bannert

et al. 2003; Leushacke et al. 2011; Purwar et al. 2012; Tsai et al.

2014; Sun, Eriksson & Wang et al. 2014; Hasumi et al. 2015).

The lack of GO enrichment may be an artifact of the RAD-

capture panel. Loci targeted herein were linked to or found in

coding regions of both putatively neutral genes as well as those

involved in immune response, potentially biasing our GO enrich-

ment analysis. Another explanation for the lack of enrichment

could stem from our conservative approach for identifying out-

liers. Using MINOTAUR, we took the top 1% of loci from each

GEA as our putative candidates. Although this approach reduces

false positives, it also can reduce true positives and imposes an

upper bound on the number of possible associations we can as-

certain between our candidate loci and disease.

Intense, long-term monitoring of Tasmanian devils coupled

with an expansive temporal and geographic dataset provided the

unique opportunity to test for changes in statistical signatures

of GEAs. We hypothesized that DFTD would serve as an ex-

tremely selective event as it is nearly 100% lethal (Hamede et al.

2015) and can produce a rapid adaptive response (Epstein et al

2016; Wright et al. 2017; Margres et al. 2018a, b) that could

swamp pre-disease allele frequency correlations with the abi-

otic environment detected with GEAs. Indeed, variation in al-

lele frequencies of loci linked to candidate genes among devil

populations prior to DFTD arrival appeared to be strongly as-

sociated with surface area of water among our coastal and in-

land populations (Tables S7–S9; Fraik et al. 2019). However, fol-

lowing disease arrival these GEAs were not detected. Although

annual temperature range and vegetation index appeared to be

important sources of selection in devil populations regardless

of disease presence, most candidate genes identified pre-DFTD

were not correlated with these variables after DFTD arrived

(Fig. 3; Fig. S4).

The observed loss of pre-DFTD GEAs following disease ar-

rival could also be the result of stochastic processes, such as drift

operating on our populations following a significant demographic

event (Lande 1976, 1993; Bruniche-Olsen et al. 2016). Following

large catastrophes, locally adapted genotypes may be displaced

or swamped out randomly by new genetic variation from neigh-

boring populations via genetic rescue (Waddington 1974; Brown

and Kodric-Brown 1977). If this were the case, our observation of

loss of pre-DFTD candidate genes may be due to drift resulting

from demographic change induced by DFTD versus the selec-

tion that DFTD imposed. In a previous study, Brüniche-Olsen

and colleagues used time-series analysis and FST outlier tests

to test for parallel signatures of selection in response to DFTD

emergence. Using 1482 SNPs from devils sampled from six

populations, they found discordance between the use of single-

point and multiple timepoint selection analyses that suggested a

non-conserved evolutionary response to DFTD (Brüniche-Olsen

et al. 2016). However, numerous follow-up studies using sig-

nificantly more loci, including another time-series analysis (Ep-

stein et al. 2016), have provided additional evidence for a rapid

evolutionary response to DFTD across devil populations, sug-

gesting that DFTD is selecting for particular genetic variants

post-DFTD arrival (summarized in Russell et al. 2018 and Stor-

fer et al. 2018b). Additionally, despite large decreases in field-

based estimates of population size, we find no detectable sig-

nificant changes to genetic diversity or effective population size

following disease arrival and therefore no evidence of genetic

drift.

Emerging infectious diseases are increasingly recognized as

significant threats to biodiversity and in extreme cases can lead

to species’ range contractions and extinctions (Smith et al. 2006).

Yet, few landscape genomics studies have tested for statistical

correlations of allele frequencies with biotic variables such as

infectious diseases. Here, we document a novel, biotic variable

swamping out molecular signals of association to the abiotic en-

vironment. This finding is consistent with previous work that

showed rapid evolution of Tasmanian devils in response to dis-

ease (Epstein et al. 2016; Wright et al. 2017; Margres et al. 2018a,

b). Additionally, no appreciable declines in genetic diversity were

detected across multiple analysis methods. Taken together, these

results suggest that the observed patterns of allele frequency cor-

relations with disease prevalence are more likely attributable to

selection than genetic drift. The findings of this study demon-

strate the utility of landscape genomics as a tool to explicitly test

the influence of biotic factors, such as disease, on the spatial dis-

tribution of genetic variation.
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