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Abstract

Genetic structure in host species is often used to predict disease spread. However, host and 

pathogen genetic variation may be incongruent. Understanding landscape factors that have either 

concordant or divergent influence on host and pathogen genetic structuring is crucial for wildlife 

disease management. Devil facial tumor disease (DFTD) was first observed in 1996 and has spread 

throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. 

Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as 

juveniles, which experience low DFTD prevalence. Thus, we predicted little association between 

devil and tumor population structure and that environmental factors influencing gene flow differ 

between devils and tumors. We employed a comparative landscape genetics framework to test the 

influence of environmental factors on patterns of isolation-by-resistance (IBR) and isolation-by-

environment (IBE) in devils and DFTD. Although we found evidence for broad-scale co-structuring 

between devils and tumors, we found no relationship between host and tumor individual genetic 

distances. Further, the factors driving the spatial distribution of genetic variation differed for each. 

Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, 

tumors showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two 

tumor clusters we identify herein. Our results warrant caution when inferring pathogen spread using 

host population genetic structure and suggest that reliance on environmental barriers to host A
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connectivity may be ineffective for managing the spread of wildlife diseases. Our findings 

demonstrate the utility of comparative landscape genetics for identifying differential factors driving 

host dispersal and pathogen transmission.

Introduction

Infectious diseases are a major driver of wildlife population dynamics and can contribute to 

extinction (De Castro & Bolker, 2005). Thus, considerable effort is devoted to detecting diseases and 

identifying the processes influencing their transmission and spread. Traditional epidemiological 

approaches rely on direct estimates of disease prevalence, host movement, and host contact rates for 

model parameterization, but these estimates are logistically challenging to obtain from wildlife 

populations (Craft, 2015; Craft, Volz, Packer, & Meyers, 2009; Hamede, Bashford, McCallum, & 

Jones, 2009). Further, there is often uncertainty as to whether observed contacts and movements 

reflect actual pathogen transmission and spread (Craft, 2015). In contrast, the spatial distribution of 

genetic variation contains signatures of past dispersal (in the case of the host) or spread (in the case of 

the pathogen) and often can be linked with environmental or ecological factors at fine spatial scales 

(Archie, Luikart, & Ezenwa, 2009; Biek & Real, 2010; Blanchong, Robinson, Samuel, & Foster, 

2016; Hemming-Schroeder, Lo, Salazar, Puente, & Yan, 2018; Kozakiewicz et al., 2018). Knowledge 

of these relationships is critical to predicting the spread of wildlife diseases and can inform 

management strategies aimed at mitigating their impact.

Spatial patterns of genetic variation are routinely used to understand patterns of connectivity 

and movement in wildlife, and a number of studies have extended this framework for predicting the 

spread of wildlife diseases resulting from host movement. For example, estimates of host genetic 

variation have been used to explain and forecast the prevalence and distribution of pathogens (e.g., 

Blanchong et al., 2008; Guivier et al., 2011; Robinson, Samuel, Rolley, & Shelton, 2013), the 

transmission potential of different host species (e.g., Paquette, Talbot, Garant, Mainguy, & Pelletier, 

2014; Vander Wal et al., 2013) or of different sexes within species (e.g., Cote, Garant, Robert, 

Mainguy, & Pelletier, 2012; Talbot, Garant, Paquette, Mainguy, & Pelletier, 2012), and to improve A
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the predictive power of models of disease spread (e.g., Davy, Martinez-Nunez, Willis, & Good, 2015; 

Kozakiewicz et al., 2018; Robinson et al., 2013; Wilder, Kunz, & Sorenson, 2015). However, 

pathogen genetic structure does not necessarily reflect that of the host, and pathogen transmission 

may be disconnected from patterns of host gene flow. Such a disconnect may be due to factors 

including multiple host/vector species, pathogen persistence in environmental reservoirs, transmission 

via nonreproducing hosts, or host life history characteristics resulting in reduced susceptibility at 

dispersal age (Mazé-Guilmo, Blanchet, Mccoy, & Loot, 2016; Talbot, Vonhof, Broders, Fenton, & 

Keyghobadi, 2017). Therefore, comparative approaches, ideally incorporating the relative influence of 

environmental or ecological factors, are necessary for understanding the extent to which host and 

pathogen genetic structure are related and to disentangle the factors influencing each. One approach 

that is ideally suited for the comparative study of host and pathogen genetic variation is landscape 

genetics. 

Landscape genetics is an analytical framework for testing the influence of environmental 

heterogeneity on patterns of gene flow and population genetic structure (Manel & Holderegger, 2013; 

Manel, Schwartz, Luikart, & Taberlet, 2003; Storfer et al., 2007). Most landscape genetics studies 

have focused on single species, but there are a growing number of comparative, multi-species studies 

(e.g., Cleary, Waits, & Finegan, 2017; Goldberg & Waits, 2010; Petren, Grant, Grant, & Keller, 2005; 

Trumbo, Spear, Baumsteiger, & Storfer, 2013; Zancolli, Rödel, Steffan-Dewenter, & Storfer, 2014). 

Even fewer multi-species studies have employed landscape genetics methods to study the dynamics of 

infectious diseases in wildlife systems (Biek & Real, 2010; Hemming-Schroeder et al., 2018; 

Kozakiewicz et al., 2018). Such comparative landscape genetics frameworks can provide valuable 

insights into how host-pathogen interactions shape patterns of disease transmission and spread across 

heterogeneous landscapes (Leo, Gonzalez, Millien, & Cristescu, 2016; Schwabl et al., 2017; Talbot et 

al., 2017). 

Tasmanian devils (Sarcophilus harrisii) and their transmissible cancer provide a highly 

appropriate study system to test for host-pathogen co-structuring in a comparative landscape genetics 

framework. In 1996, devil facial tumor disease (DFTD) was discovered in northeastern Tasmania, 

Australia. DFTD is one of only a few documented transmissible cancers (Metzger & Goff, 2016; A
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Ostrander, Davis, & Ostrander, 2016; Storfer et al., 2017) and since its emergence, has spread across 

almost the entire geographic range of the Tasmanian devil (Save the Tasmanian Devil Programme, 

2019) (Figure 1). With a nearly 100% mortality rate, DFTD has caused an estimated 80% population 

decline across the species range, with localized declines exceeding 90% (Lazenby et al., 2018; 

McCallum et al., 2007). 

Devil facial tumors are transmitted as an allograft through biting, a common occurrence during 

social interactions among devils (Hamede, Mccallum, & Jones, 2013; Hamilton et al., 2019). Direct 

transmission of DFTD among devils means that its spatial spread is inextricably tied to the 

movements of devils – a relationship which leads to the assumption of genetic co-structuring among 

host and pathogen (Criscione, 2008; Jarne & Théron, 2001; Mazé-Guilmo et al., 2016). Yet, for co-

structuring to occur, pathogen dispersal must be synchronized with host dispersal and subsequent 

reproduction. In other words, individuals must disperse while infected and reproduce thereafter. This 

requirement has been identified previously but is often overlooked in studies that use host movements 

to predict disease spread. In devils, gene flow typically occurs through individuals that dispersed 

away from their natal sites as juveniles, whereas DFTD transmission occurs primarily during the adult 

life stage. Juvenile dispersal is likely to take place over greater distances than the typical movements 

of adult devils because adults maintain high fidelity to their established home ranges, which are 

typically 5-30 km2 (Lachish, Miller, Storfer, Goldizen, & Jones, 2011; Pemberton, 1990). Yet, genetic 

spatial autocorrelation distances are up to 100 km in eastern Tasmania (Lachish et al., 2011) and 60 

km in western Tasmania (Storfer et al., 2017). On this basis, we would hypothesize that co-structuring 

among devils and tumors is weak and that devil gene flow should be less geographically constrained 

than the spread of DTFD. 

An alternative hypothesis is that DFTD disperses more rapidly and shows less genetic 

structure than devils because opportunities for transmission occur more frequently than devil 

reproduction. That is, whereas the biting contacts required for DFTD transmission are a common 

social behavior occurring throughout the year (albeit more frequently during the mating season), 

devils generally mate between February and May (Hamede et al., 2009, 2013; Hamilton et al., 2019). 

Furthermore, the potential effect of a single dispersing individual on genetic structure is less in devils A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

than for tumors. This is because a single tumor may proliferate into a large, clonal lineage that 

dramatically shifts the overall genetic structure of tumors in its new population. High mobility of 

DFTD tumors is supported by the fact that DFTD has spread from the northeastern corner of 

Tasmania to the west coast of Tasmania in just over 20 years (Epstein et al., 2016; Storfer et al., 2017) 

(Figure 1). It is unclear which of these competing hypotheses is best supported, exemplifying the need 

to understand the extent to which host and pathogen movements are linked and whether they are 

subject to the same environmental constraints. 

Herein, we employ a comparative landscape genetics framework to test these competing 

hypotheses. Specifically, we test whether Tasmanian devil population structure predicts DFTD tumor 

population structure and whether host gene flow and pathogen spread are dictated by distinct 

environmental factors. We use 6,478 SNPs in devils and 1,595 SNPs in tumors genotyped using 

RAD-capture (Ali et al., 2016; Margres et al., 2018) to reveal broad-scale population structure as well 

as fine-scale patterns of genetic variation. Individual-level estimates of genetic variation were 

analyzed using complementary landscape genetic approaches to investigate the relative roles of 

isolation-by-environment (IBE) and isolation-by-resistance (IBR) in influencing genetic structure in 

both devils and DFTD. In short, IBE occurs due to the environment at sample locations, whereas IBR 

occurs due to the environment intervening sample locations. IBR approaches allow us to quantify how 

environmental heterogeneity across entire landscapes can affect functional connectivity (McRae, 

2006), and distinguish these effects from the classical isolation-by-distance model (IBD; Wright, 

1943). In contrast, IBE describes the effect of divergent environments on genetic differentiation 

(Wang & Bradburd, 2014) and can occur for various reasons, including population-specific adaptation 

to local environmental conditions (and thus maladaptation of and selection against migrants) or natal 

habitat preference induction leading to habitat-biased dispersal (Wang & Bradburd, 2014). 
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Methods

Study system 

Tasmanian devils are carnivorous marsupials endemic to the island of Tasmania, Australia, 

where they are apex predators. Tasmania comprises a total land mass of 68,401 km2 and encompasses 

a dramatic east-to-west climatic gradient and a high degree of topographic variability. Devils prefer 

eucalypt and sclerophyll forests and coastal scrub lands, but they can also be found near to human 

developments and agricultural land (Guiler, 1970; Hawkins et al., 2006; James et al., 2019). Previous 

work indicates up to six genetic populations island-wide, including a clear distinction between 

individuals sampled from northwestern Tasmania and those from elsewhere on the island (Brüniche-

Olsen, Jones, Austin, Burridge, & Holland, 2014; Fraik et al., 2020; Hendricks et al., 2017; Miller et 

al., 2011; Storfer et al., 2017). The cause of this east-to-west spatial genetic heterogeneity remains 

unclear, with previous landscape genetics work implementing least-cost path modelling and 

microsatellite loci unable to identify any landscape factors driving this variation (Storfer et al., 2017). 

The transmissible tumor first identified in 1996 is now present across nearly the entire devil 

geographic range, with all extant cases having a common origin. However, in 2014, a second 

transmissible cancer of devils, devil facial tumor disease 2 (DFT2), was discovered in southern 

Tasmania, independent in origin from the first (Pye et al., 2016). DFT2 remains geographically 

restricted; yet, insights gained into the transmission of the first tumor may help inform the 

management of DFT2 and any subsequent transmissible tumors, as well as other directly transmitted 

diseases. Herein, we focus on the first tumor, to which we refer exclusively in this study as “DFTD” 

or “tumors”, with any references to the second tumor, DFT2, specified as such. No cases of DFT2 

were included in this study.

DFTD infection is typically observed in adult devils, most likely due to limited injurious biting 

contact until adulthood (Hamede et al., 2013) and changes in immune system function at sexual 

maturity (Cheng et al., 2017). Nonetheless, tumors are occasionally observed in juveniles, with a long 

latent period likely biasing detectability toward adults (Hamede et al., 2013, 2015; Lazenby et al., 

2018). DFTD replicates clonally, with no evidence of recombination among tumors. However, cancer A
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lineages accumulate somatic mutations over time, thus generating genetic differences among locations 

that reflect how a given lineage has spread spatially (Murchison et al., 2012; Schwartz & Schäffer, 

2017; Stammnitz et al., 2018). Therefore, characterization of DFTD genetic structure enables us to 

infer how it has spread among devil populations with respect to geographic and environmental 

factors.

Sample collection

We collected georeferenced Tasmanian devil ear and tumor tissue samples using a 3 mm 

biopsy punch from wild devils over a 12-year period. A detailed description of field trapping 

protocols can be found in Hawkins et al. (2006) and Hamede et al. (2015). Two hundred and 

seventeen devil samples and 177 tumor samples, of which 87 were paired samples with both tumor 

and host tissue taken from the same individual, were collected from an approximately 12,000 km2 

area in northwest Tasmania between 2004 and 2016 (Figures 1 and 2). We focused on this area 

because it contains a high degree of environmental and topographic variation and overlaps with a 

broad-scale genetic discontinuity among devil populations identified in previous studies (Brüniche-

Olsen et al., 2014; Hendricks et al., 2017; Miller et al., 2011; Storfer et al., 2017), suggesting potential 

environmental/landscape constraints on devil movements. Sampling across this region was relatively 

consistent throughout the sample period and coincided with the arrival and spread of DFTD in this 

region (Figure 1).  

RAD-capture array

We used a Restriction site Associated DNA (RAD) capture (i.e., “Rapture”) array (Ali et al., 

2016) to target loci across the devil and tumor genome. The capture array was developed from RAD 

sequencing of 360 devils (Epstein et al., 2016); 15,898 of the 90,000 RAD loci from this earlier study 

were used to make a targeted array using the myBaits for high throughput population genomics 

studies kit (Arbor Biosciences, Ann Arbor, MI) as described in Margres et al. (2018). Targeted loci 

met one or more of the following criteria: 1) genotyped in ≥ 50% of individuals, contained ≤ 3 non-A
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singleton SNPs with a minor allele frequency (MAF) ≥ 0.05, and was ≥ 20 kb away from other 

targeted loci to increase genome coverage (7,108 loci); 2) located within 50 kb of an immune related 

gene, with ≤ 4 non-singleton SNPs, and genotyped in ≥ 67% of the individuals (6,315 loci); and, 3) 

showing some preliminary evidence of association with DFTD susceptibility and having ≤ 5 non-

singleton SNPs (3,316 loci). 

Because the myBaits array was developed for devils and not DFTD, we tested whether the 

array could successfully capture RAD loci from tumor samples by aligning whole genome tumor 

samples (sequenced at 90x coverage; from Margres et al., 2020)  to the devil reference genome 

(downloaded from Ensembl June 2014; Murchison et al., 2012) using Burrows-Wheeler Aligner 

v0.7.12 (option MEM; Li & Durbin, 2009). We measured tumor coverage across each Rapture region 

using Bedtools v2.27.0 (Quinlan & Hall, 2010). Only 10 genomic regions covered on the capture 

array showed low coverage (< 10x), illustrating that 99.9% of the baits should capture tumor DNA.

Sequencing and data processing

We extracted DNA from tissue biopsies using the Qiagen DNeasy Blood & Tissue Kit, 

doubling the recommended amount of proteinase K to maximize lysis efficiency. DNA was digested 

using the Pst1 restriction enzyme and the RAD-capture libraries were sequenced on an Illumina 

HiSeq 4000 at the Genomics Sequencing Laboratory at the University of California, Berkeley. We 

processed the raw data as previously described (Margres et al., 2018). Briefly, reads were de-

multiplexed and low-quality reads as well as potential PCR duplicates were removed using Stacks 

v1.21 (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). Reads were then aligned to the 

reference genome using bowtie2 v2.3.4 (Langmead & Salzberg, 2012) with the --sensitive, --end-to-

end, and -X 900 settings.
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Variant calling 

To identify variants, we used HaplotypeCaller in GATK v3.8 (DePristo et al., 2011; McKenna 

et al., 2010), with devils and tumors genotyped separately. For each, we removed SNPs and indels 

matching any of the following criteria: quality by depth < 2.0, strand bias Phred-scaled p-value > 

60.0, root mean square of the mapping quality < 40.0, mapping quality rank sum test approximation 

of 12.5, and a read position rank sum test approximation of eight.

We removed non-targeted regions from the dataset using Bcftools isec (Li, 2011), followed by 

removal of SNPs with a minimum depth < 5, minimum genotype quality < 25, missing data > 50%, 

and MAF < 0.01 using VCFtools v0.1.15 (Danecek et al., 2011). Then, to identify tumor-specific 

somatic SNPs and account for possible host contamination during tumor biopsy, we again used 

Bcftools isec to remove any SNP in the tumor dataset that was also identified in the host samples. 

Following filtering, we retained 6,478 devil and 1,595 tumor SNPs for analysis. 

Population structure

We investigated both host and tumor population genetic structure using two complementary 

approaches, following best practices recommended by (Janes et al., 2017). First, we performed a 

discriminant analysis of principal components (DAPC) using adegenet (Jombart, 2008) in R version 

3.6.3 (R Development Core Team, 2013). Briefly, we used the find.clusters function to perform k-

means estimation of the best-fit number of genetic clusters (K) as determined by the Bayesian 

Information Criterion (BIC), followed by the DAPC function to estimate probabilities of membership 

to each cluster for each tumor sample. Second, we evaluated population structure using STRUCTURE 

v2.3.4 (Pritchard, Stephens, & Donnelly, 2000). We tested all values of K between 1 and 5, 

performing ten replicate runs per K. Each run comprised 1,000,000 Markov chain Monte Carlo 

iterations following a burn-in of 50,000 iterations. Although STRUCTURE is inappropriate for clonal 

populations, we performed this analysis for tumors to maintain consistency with the host analysis and 

to complement the more suitable DAPC analysis. Because there are no recorded observations of 

recombination among tumors, we specified the admixture-free model in STRUCTURE. The most A
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likely K was determined using ΔK according to the Evanno method (Evanno, Regnaut, & Goudet, 

2005), implemented in STRUCTURE HARVESTER (Earl & VonHoldt, 2012; Van Rossum & Drake 

Jr, 1995), and assessment of mean estimated natural logarithm of the probability of the data 

[LnPr(X|K)] values. To identify possible hierarchical population structure, we repeated analyses of 

population structure on individual genetic clusters identified in initial runs until no further additional 

genetic clusters were identified.

Due to lack of recombination among tumors, we interpreted genetically distinct clusters of 

tumor samples as discrete, non-recombining groups. To ensure confidence in the identified clusters, 

we assigned tumors to a genetic cluster only where DAPC and STRUCTURE assignments were 

concordant. We excluded tumor samples with ambiguous assignment from any analysis pertaining to 

a specific cluster. Once tumor clusters had been identified, we performed an Analysis of Molecular 

Variance (AMOVA; Excoffier, Smouse, & Quattro, 1992) to quantify the proportion of overall 

genetic variance explained by differentiation between clusters relative to that explained by variation 

among and within individual tumors. AMOVA was performed using the poppr package in R 

(Kamvar, Tabima, & Grünwald, 2014) and significance determined using a randomization test with 

100 permutations, which was performed using ade4 (Dray & Dufour, 2007).

We tested for genetic co-structuring among paired devil-tumor samples using two approaches. 

Firstly, we conducted a Mantel test comparing host genetic distances and tumor genetic distances. 

Individual genetic distances were calculated as 1 – Dps, where Dps is the proportion of shared alleles 

between paired samples, using adegenet. Secondly, we fitted a logistic regression to determine if 

STRUCTURE assignment probabilities for hosts were predictive of the genetic cluster to which a 

given host’s tumor was assigned. We also used a logistic regression to determine whether sample date 

was predictive of the genetic cluster of each tumor.

Landscape genetics

We conducted landscape genetic analyses to identify how environmental factors influence 

patterns of devil and tumor genetic structure within both IBR and IBE frameworks. All landscape A
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genetic analyses were conducted separately for host and tumor. In addition to analyzing all tumors 

together, we also conducted landscape genetic analyses separately for each of the identified tumor 

clusters (as identified by the above described population genetic approaches) to account for 

differences in environmental associations among clusters.

We selected six continuous and two categorical variables to test in our landscape genetic 

analyses based on habitat preferences observed through prior devil mark-recapture studies (Guiler, 

1970; Hawkins et al., 2006), radio collaring studies (M.E. Jones, unpublished data), and a previous 

landscape genetic study of Tasmanian devils (Storfer et al., 2017). The continuous variables 

comprised elevation, elevation relief ratio (a measure of relative altitudinal relief between two points; 

Pike & Wilson, 1971), annual mean temperature, temperature annual range (the difference between 

the average 24-hour maximum temperature of the hottest month and the average 24-hour minimum 

temperature of the coldest month), annual precipitation, and precipitation seasonality (the coefficient 

of precipitation variation; Feng, Porporato, & Rodriguez-Iturbe, 2013). Categorical variables were 

land cover type and roads. Land cover types were derived from the TASVEG 3.0 vegetation 

communities dataset (DPIPWE, 2013) and partitioned according to the ten broad vegetation 

categories defined by TASVEG 3.0, with agriculture and urban areas/exotic vegetation forming a 

further two categories. Roads data were downloaded from Geoscience Australia (data.gov.au) and 

classified as principal, secondary, and minor roads, to which we refer as highways, major roads, and 

minor roads, respectively. Elevation data were downloaded from Geoscience Australia and elevation 

relief ratio was calculated from the elevation data using the raster calculator in ArcGIS v10.7 (ESRI, 

2011). Climatic data were downloaded from WorldClim v2 (Fick & Hijmans, 2017). We assessed 

multicollinearity among environmental rasters using Variance Inflation Factors (VIF), retaining only 

variables with VIF < 10 (Table S1). Annual mean temperature had a VIF score exceeding this 

threshold and was subsequently removed from all analyses. 

Pairwise individual genetic distances were interpreted for devils and tumors as a relative proxy 

for genetic connectivity and used as a response variable for landscape genetic analyses. 
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Isolation-by-resistance: effects of landscape heterogeneity intervening sites 

We tested for effects of landscape variables on genetic connectivity in an IBR framework 

using the R package ResistanceGA (Peterman, 2018). ResistanceGA optimizes the correlation 

between genetic distances and resistance surface cost values by using a genetic algorithm to explore 

potential resistance surface parameterizations for each landscape variable. Resistance surface 

optimization approaches avoid the need to a priori assign costs to environmental variables through 

expert opinion or species distribution and habitat suitability models, which can be difficult to translate 

to numerical values of resistance to movement (Elliot, Cushman, Macdonald, & Loveridge, 2014; 

Spear, Balkenhol, Fortin, McRae, & Scribner, 2010). In contrast to least-cost path modelling, which 

considers only a single optimal dispersal pathway with respect to a heterogeneous landscape factor of 

interest (thus assuming that individuals have complete knowledge of the landscape), IBR analytical 

frameworks that implement circuit theory can account for all possible dispersal pathways in 

predicting rates of gene flow (McRae, 2006). 

We optimized resistance surfaces singly for each environmental variable based on random-

walk commute time between locations (van Etten, 2017). In brief, the genetic algorithm used for 

optimization comprised a randomly generated population of individuals possessing parameters with 

randomly chosen values that determine which of a variety of transformations is applied to the 

resistance surface, the shape of the transformation, and the maximum resistance value (Peterman, 

2018). Thus, each simulated individual represents a uniquely parameterized resistance surface. Across 

each resistance surface (i.e., per simulated individual), pairwise commute times are calculated and 

evaluated against the true pairwise genetic distances using a linear mixed effect model with maximum 

likelihood population effects (MLPE), which accounts for nonindependence among pairwise samples 

(Clarke, Rothery, & Raybould, 2002; Van Strien, Keller, & Holderegger, 2012). Model support, or 

“fitness” of each simulated individual is determined using log-likelihood, with those achieving the 

highest log-likelihood allowed to “reproduce” to form a population comprising the next generation of 

the algorithm. This new population inherits the parameters from the previous generation (while 

allowing for random mutation and recombination of the parameters), and the process repeats itself 

through a number of subsequent generations. For each landscape variable, we specified that 25 A
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generations must pass with no improvement to the MLPE model log-likelihood for a resistance 

surface to be identified as optimal. Following optimization, to test the relative support of each 

environmental variable as a predictor of genetic distance, we used the final optimized surfaces to 

again generate commute times and fit MLPE models, calculated without restricted maximum 

likelihood (REML) and bootstrapped for 1,000 iterations with 90% subsampling. We ranked 

environmental variables by average AICC scores across all bootstrap iterations.

Isolation-by-environment: effects of environmental differentiation on genetic differentiation

To investigate the extent to which genetic differentiation in hosts and tumors is influenced by 

patterns of IBE, we used generalized dissimilarity modelling (GDM) as implemented in the R 

package gdm (Fitzpatrick & Keller, 2015). Originally designed for community-level modelling of 

species turnover, GDM performs linear regressions to test associations between dissimilarity and 

distance matrices, but fits i-spline functions to allow for non-linear responses and controls for 

geographic distance among sample locations (Ferrier, Manion, Elith, & Richardson, 2007). GDM 

assumes ordered categorical or continuous predictor variables (Ferrier et al., 2007), so we included 

only elevation, elevation relief ratio, and our climatic variables in this analysis. Environmental 

variables were measured as the mean value within a 15 km2 buffer around each sample location, 

approximating a typical devil home range (M.E. Jones, unpublished data). We used matrix 

permutation (500 permutations with 90% subsampling of both sites and site-pairs) with backward 

elimination to evaluate model and variable significance and estimate variable importance (Fitzpatrick 

& Keller, 2015). During each iteration of the backward elimination procedure, the least important 

variable was removed, and variable importance and significance re-calculated for the new model. As 

non-explanatory (i.e., the least important) variables were removed, the percent deviance explained by 

each successive model relative to the null did not change. Only as explanatory variables were 

removed did the percent deviance explained drop. Thus, the top model was identified as the model 

with the highest deviance explained and containing the fewest variables. Variable importance was 

calculated as the percent change in model deviance upon permutation of the given variable. 
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Geographic distance was included as a control in all models and was not subject to backward 

elimination. 

In addition to the host, all-tumor, and tumor cluster-specific tumor analyses, to compare the 

relative effects of host genetic variation and environmental variables on tumor genetic differentiation, 

we performed a separate GDM analysis of tumors for which the corresponding host devils were 

genotyped. For this analysis, the same environmental variables were included as above, with the 

addition of host genetic distances. 

Results

Host and pathogen population structure

Analysis of devil population genetic structure using DAPC suggested the most likely number 

of genetic clusters was K = 2, according to BIC support. However, ∆BIC did not exceed 2 for either K 

= 1 or K = 2 (Figure S1), suggesting that patterns of population structure were difficult to resolve with 

our data (Burnham & Anderson, 2002). Similarly, STRUCTURE provided the most support for K = 2 

as determined by ΔK calculated using the Evanno method. Although the Evanno method is unable to 

evaluate K = 1 and thus cannot exclude it as a potential solution (Janes et al., 2017), K = 1 was the 

least supported solution according to mean LnPr(X|K), supporting the existence of multiple genetic 

clusters. Further, mean LnPr(X|K) values supported successively higher values of K (Table 1), 

indicating a potential genetic cline. However, there was also greater variation in LnPr(X|K) among 

iterations at higher values of K (Table 1), suggesting some uncertainty. Further analysis of 

hierarchical structure within the initial K = 2 clusters did not provide clear evidence for any further 

genetic clusters for DAPC, yet STRUCTURE again supported successively higher values of K 

according to LnPr(X|K). Thus, for devils, we settled on K = 2 as representing opposite ends of a 

genetic cline. Accordingly, these clusters were not geographically discrete, with individual 

assignment probabilities indicating a continuous longitudinal admixture gradient (Figures 2 and 3).

In tumors, DAPC and STRUCTURE both supported two genetic clusters (Table 1, Figure S1). 

However, LnPr(X|K) was higher for STRUCTURE runs at K = 4 but, similarly to devils, with greater A
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variation among iterations. Subsequent DAPC and STRUCTURE runs showed no evidence of 

hierarchical population structure in tumors. Of the 177 tumors, 147 had cluster assignments that were 

supported by both DAPC and STRUCTURE at K = 2, with 30 tumors ambiguously assigned. 

Hereafter, we refer to the two identified tumor clusters as tumor cluster 1 (n = 74) and tumor cluster 2 

(n = 73). There was no clear geographic structure among these clusters, with almost complete spatial 

overlap. However, we did observe a slight predominance of tumor cluster 2 towards the eastern end of 

the study area (Figures 2, 3). AMOVA revealed significant genetic variance attributable to the 

identified tumor clusters, which explained 6.48% of variation (P = 0.01) compared to minimal 

(1.58%; P = 0.23) variation attributable to among-tumor variation within clusters (Table S2). 

Variation within individual tumors comprised 91.94% of overall genetic variation (P = 0.04). This is 

due to somatic mutation in cancers producing high rates of heterozygosity.

Tasmanian devils and DFTD are weakly co-structured

Our STRUCTURE results provide some evidence for host-tumor co-structuring along a 

longitudinal gradient (Figures 2, 3). Logistic regression revealed that tumor cluster identity was 

predicted by devil population structure (LRT = 5.81; P = 0.016; Figure 4a) but not sampling date 

(LRT = 1.74; P = 0.19), suggesting co-circulating tumor clusters that broadly co-structure with host 

populations. However, when comparing host and tumor genetic distances directly, we found no 

correlation (Mantel r = -0.10, P = 0.92; Figure 4b). Further, host genetic distances performed worse 

than environmental differences in predicting tumor genetic differentiation (see below landscape 

genetic analyses). Mean genetic distances were greater among devils (0.30, SD = 0.025) than among 

tumors (0.14, SD = 0.035). 
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Landscape factors more strongly affect spatial genetic variation in devils than DFTD 

Isolation-by-resistance: effects of landscape heterogeneity intervening sites

In devils, landscape heterogeneity intervening sites explained substantial variation in gene 

flow. Although geographic distance was most frequently the top model (52.7% of bootstrap iterations) 

and explained 24.9% of genetic variation among devils, it had relatively low mean AICc support 

across bootstraps (mean ΔAICc = 5.97; Table 2). Roads as a barrier to gene flow had the highest 

average support of all models and was the top model in 38.4% of bootstrap iterations, explaining 

37.9% of genetic variation among devils. Optimization of the roads resistance surface assigned the 

greatest costs to devil movement to highways and major roads, with minor roads and non-road cells 

having relatively low costs to devil movement. Although two other variables – precipitation 

seasonality and elevation relief ratio – had greater mean AICc
 support than geographic distance, they 

were poorly supported overall, being the top models in less than 7% of bootstrap iterations and having 

a mean ΔAICc > 2. No other landscape resistance model had mean ΔAICc < 2.

Among DFTD tumors, genetic variation was poorly explained by between-site landscape 

variables. Elevation and precipitation seasonality both had mean ΔAIC < 2 and were the most 

frequent top models among bootstrap iterations. However, these models explained minimal genetic 

variation among tumors. Elevation was most the supported model (mean ΔAICc = 0; top model in 

67.7% of bootstrap iterations) but explained only 1.5% of genetic variation among tumors. 

Precipitation seasonality was less supported (mean ΔAICc = 1.70; top model in 30.5% of bootstrap 

iterations) but explained slightly more genetic variation among tumors (mean mR2 = 0.03). 

When analyzing each tumor cluster separately, the top landscape resistance models differed 

among clusters but still explained relatively little genetic variation for each. For tumor cluster 1, 

elevation relief ratio was the top model in 77.2% of bootstrap iterations, with annual precipitation 

being the top model in 11.5% of bootstrap iterations (mean ΔAICc = 1.48). However, all but two of 

the models for cluster 1 had a mean ΔAICc < 4, suggesting relatively weak support for the top models 

over the others. For tumor cluster 2, elevation was the top model in 77.6% of bootstrap iterations 

(mean ΔAICc = 0), with all other models poorly supported.A
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Isolation-by-environment: effects of environmental differentiation on genetic differentiation

Analysis of isolation-by-environment patterns using GDM did not identify any environmental 

differences among sample locations that were explanatory of genetic differentiation among devils 

(Table 3). The top model explained a reduction in deviance relative to the null model of 11.87%, but 

contained only a significant effect of geographic distance, which explained just 1.84% of this 

reduction in model deviance. This suggests a weak effect of isolation-by-distance among devils.

Among all tumors, the top model explained a reduction in model deviance relative to the null 

model of 6.67% and contained significant effects of geographic distance and differences in elevation. 

Elevation predominated, explaining 99.95% of this reduction in model deviance, while the effect of 

geographic distance was nonexistent. This lack of an effect of geographic distance despite statistical 

significance was likely due to geographically distant animals being located in areas that differ in 

elevation, resulting in elevation explaining a high proportion of model deviance that would otherwise 

be partly explained by geographic distance. 

When analyzing tumor clusters separately, the effect of elevation differences on genetic 

differentiation among tumors persisted only for tumor cluster 2, whose top model explained a 4.66% 

reduction in deviance relative to the null model. Elevation explained 93.36% of this reduction in 

model deviance, whereas the effect of geographic distance was non-significant. None of the models 

for tumor cluster 1 were significant upon permutation of environmental dissimilarity matrices, 

suggesting that none of the tested landscape variables, nor geographic distance, were influencing 

genetic differentiation among tumors within this cluster.

Host genetic distances did not perform better than environmental differences in explaining 

tumor genetic differentiation. In tumors for which the host devil was genotyped, host genetic distance 

was absent from the top model, which explained a reduction in model deviance relative to the top 

model of 5.50%. Elevation was the most important variable, explaining 44.81% of this reduction in 

model deviance, consistent with the all-tumor analysis.
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Discussion

We conducted a comparative landscape genetic study of Tasmanian devils and DFTD to 

identify environmental factors driving IBR and IBE patterns in both host and pathogen. Our results 

warrant caution when inferring pathogen spread using host population genetic structure. Although we 

found evidence for broad-scale co-structuring between devils and tumors, the primary landscape 

processes influencing genetic variation appeared to differ between host and pathogen. In devils, we 

found two genetic clusters, consistent with previous studies (Storfer et al., 2017). Further, a relatively 

strong IBR pattern was present, whereby genetic variation was driven largely by major roads and 

highways acting as barriers to gene flow. However, evidence of IBE was absent in devils. 

Surprisingly, we found no geographic or temporal structure among two identified tumor clusters, 

suggesting coexistence of distinct tumor lineages throughout the study area for the entire sampling 

period. IBE in tumor cluster 2, although not particularly strong, was largely attributable to differences 

in elevation. Despite almost complete spatial overlap with cluster 2, tumor cluster 1 exhibited no 

evidence of IBE.

Co-structuring among Tasmanian devils and DFTD

In devils, we observed a clinal pattern of admixture between two genetic clusters from east-to-

west across our study area. Previous broader-scale studies of devils have identified relatively discrete 

genetic clusters, with a genetic discontinuity approximately overlapping our study area that 

distinguishes northwest Tasmanian devils from other populations (Brüniche-Olsen et al., 2014; 

Hendricks et al., 2017; Jones, Paetkau, Geffen, & Moritz, 2004; Miller et al., 2011). Our study 

encompasses a relatively smaller geographical area at a higher sampling density than previous studies, 

and it is likely that the observed clinal pattern reflects admixture between the previously identified 

northwestern population and those further to the east. 

We observed broad-scale genetic co-structuring between infected devils and their tumors, 

whereby devil genetic cluster assignment probabilities were predictive of the tumor cluster to which a 

given individual was host. However, there was no correlation between host and tumor genetic A
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distances, suggesting that individual-level tumor variation (i.e., within clusters) is not influenced by 

host gene flow and a lack of co-structuring at a fine scale. Our inferred DFTD clusters had almost 

complete spatial overlap with one another, but we observed a higher prevalence of cluster 2 within 

Narawntapu National Park, our eastern-most collection site. Devils from this area showed almost 

complete assignment to a genetic cluster that was only present at admixture levels among other 

samples in this study (Figure 2), suggesting at least partial isolation of the Narawntapu population. 

Geographic isolation of Narawntapu, a coastal site surrounded by large water bodies and mountains, 

is further supported by documentation of a genetic distinct group of bare-nosed wombats (Vombatus 

ursinus) in this area (Martin et al., 2019a). Thus, we believe the observed broad-scale co-structuring is 

driven predominantly by geographic isolation of Narawntapu from the rest of our study area, rather 

than concordant patterns of gene flow. 

Previous work has shown evidence of DFTD lineage replacement based on karyotype 

(Hamede et al., 2015), which may affect the spatial structuring of tumors. For example, a tetraploid 

DFTD strain first arrived at West Pencil Pine (a portion of our study area) in 2006, and initially 

resulted in lower than typical prevalence and higher than typical survival rates among infected 

individuals (Hamede et al., 2012, 2015). Devil populations subsequently began to decline with the 

arrival of a diploid tumor strain, which out-competed and replaced the tetraploid strain (Hamede et al., 

2015). In contrast, we did not observe lineage replacement but rather co-circulation. However, we had 

insufficient data to test for differences in karyotype or virulence among our observed tumor strains, 

and the spatial scale of our study was considerably broader than that at which karyotypic partitioning 

was observed by Hamede et al. (2015) (within a 25km2 area). As such, our results do not preclude the 

occurrence of lineage replacement at highly localized spatial scales. 

Isolation-by-resistance affects devils but not DFTD

Overall, IBR had a strong influence on genetic structure of devils but not tumors, supporting 

our hypothesis that tumor transmission among adult devils is less constrained by landscape than gene 

flow among juvenile dispersers. A significant negative effect of roads (predominantly highways and 

major roads) on gene flow was observed in devils, explaining 38% of genetic variation among our A
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samples, compared to 25% of variation attributable to isolation-by-distance alone. Roads are a source 

of wildlife mortality due to vehicle collision, including in devils (Grueber et al., 2017; Jones, 2000). 

Coupled with the loss of habitat associated with road construction as well as fences and other 

structures, roads reduce structural and functional landscape connectivity and often lead to decreased 

gene flow. Such responses to roads are well-documented, and have been observed in both small, 

sedentary species (Arens et al., 2007; Holzman et al., 2009) as well as large, wide-ranging species 

(Coulon et al., 2006; Epps et al., 2005), including carnivores (Kozakiewicz et al., 2019; Riley et al., 

2006). However, use of minor roads as movement corridors has been observed in devils, likely due to 

greater ease of movement through cleared vegetation and an abundance of roadkilled carcasses for 

scavenging (Andersen, Johnson, Barmuta, & Jones, 2017). We found neither a positive nor a negative 

effect of minor roads on devil gene flow. However, our study was conducted over a much larger area 

than Andersen et al. (2017), with road use potentially occurring over only small distances without a 

significant effect on longer distance dispersal events.

Roads that form barriers to wildlife do not necessarily act similarly as barriers to their 

pathogens – even those relying on direct transmission. For example, a major highway was found to 

produce strong population genetic structure in bobcats (Lynx rufus) but not in their directly-

transmitted viruses (Lee et al., 2012). Similarly, our results suggest that roads do not significantly 

influence DFTD transmission. Roads are known to disproportionately affect juvenile devils, which 

exhibit higher mortality rates from vehicle collision than adults (Jones, 2000). Thus, roads likely 

present a greater barrier to dispersing juveniles, via which devil gene flow is primarily mediated, than 

to adults, via which DFTD transmission predominantly occurs. Overall, differentiation among tumors 

was not governed by any variation in connectivity due to landscape or environmental heterogeneity, 

with IBR patterns explaining barely more than 3% of tumor genetic variation. DFTD has spread 

across Tasmania very rapidly (Lazenby et al., 2018; McCallum et al., 2007), so it is not surprising that 

tumor movement has been largely unconstrained by geography. Tumors can proliferate rapidly if even 

a single infected individual reaches a naive population after crossing a challenging landscape. By 

contrast, the same challenging landscape may facilitate only occasional dispersal by juveniles, which 

may not even reproduce subsequently. Thus, although major roads constrain devil movements to the A
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extent that devil population genetic structure is increased, even infrequent crossing of roads by 

DFTD-infected individuals is sufficient to sustain rapid DFTD spread.

Isolation-by-environment affects DFTD but not devils

Despite substantial topographic variation and a large rainfall gradient from east-to-west that 

produces dramatic variation in vegetation types and structure across Tasmania, we found no 

detectable IBE effect. This result is somewhat surprising because devil population densities vary 

throughout Tasmania concordant with habitat preference for low-elevation dry eucalypt forest, with 

lower densities at high elevations and in areas of cool temperate rainforest (Jones & Barmuta, 2000). 

However, the relatively narrow geographic focus of our study likely did not capture a sufficient 

proportion of these environmental gradients (relative to range-wide variation) for IBE patterns to be 

evident, with devils throughout our study area occupying (and preferring) relatively similar habitats.

In contrast to devils, we did detect evidence of IBE in tumors. Specifically, we found a 

significant positive correlation between elevation difference and genetic distance of tumors. When 

analyzing tumor clusters separately, we found that this effect was entirely driven by cluster 2, with 

genetic differentiation among cluster 1 lacking any significant association with any tested 

environmental factor, including geographic distance. We believe this effect of elevation on genetic 

differentiation among cluster 2 is most likely a result of population structure that is coincident with an 

elevation gradient. As we discussed above, a large proportion of cluster 2 tumors were sampled from 

Narawntapu National Park. Narawntapu is effectively at sea level, whereas the majority of tumors 

were sampled from devil populations in higher elevation areas. Thus, genetic differentiation among 

these groups owing to geographic isolation of Narawntapu tumors would be expected to produce an 

isolation-by-elevation effect. Although it is possible that some innate biological characteristic of the 

tumor may instead be driving this effect, the mechanism by which this would occur is unclear. 

Potentially, climatic differences (e.g., temperature, moisture) among high and low elevation areas 

could influence the ability of tumor cells to successfully implant in uninfected devils, driving local 

adaptation of tumors in these regions, although this has yet to be demonstrated. Alternatively, 

differences in local landscape characteristics and thus devil densities may change the frequency of A
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biting interactions among devils that in turn alters the DFTD transmission rate. However, existing 

studies of devil interactions provide no support for this explanation, with biting behaviors tied to 

interactions that devils seek out regardless of landscape structure (Hamede et al., 2009, 2013; 

Hamilton et al., 2019). 

Conclusions

Comparative landscape genetic studies facilitate identification of patterns of connectivity that 

are common to multiple species. However, use of host gene flow estimates as a proxy for pathogen 

transmission and spread can lead to erroneous conclusions in cases of incongruent host and pathogen 

genetic structure (Kozakiewicz et al., 2018; Mazé-Guilmo et al., 2016). We have shown that host 

population structure, and the landscape features that influence it, is decoupled from that of their 

pathogens. Roads, which were found to constrain devil gene flow significantly, were not associated 

with DFTD transmission, suggesting that genetic studies of devils are insufficient to infer or predict 

the spatial spread of tumors. This decoupling of host and pathogen likely occurred due to a mismatch 

between dispersal life stage and the stage at which devils typically carry and transmit DFTD. In other 

systems, external ecological factors such as multiple host/vector species or transmission via the 

environment are also known to mediate host-pathogen interactions (Näpflin et al., 2019; Witsenburg 

et al., 2015). Such ecological factors are amenable to inclusion in a comparative landscape genetic 

framework, emphasizing the value of comparative landscape genetics studies in host-pathogen 

systems where the dynamics of host dispersal and pathogen transmission may differ. Examples 

include sarcoptic mange, which infects various mammal species and can be transmitted 

environmentally (Martin et al., 2019b; Niedringhaus, Brown, Sweeley, & Yabsley, 2019), or 

pathogens requiring arthropod vectors, such as Plasmodium spp. (malaria; Lo et al., 2017), whereby 

disease spread relies on multiple species and is strongly mediated by the environment (Hemming-

Schroeder et al., 2018; Schwabl et al., 2017).

Despite the apparent de-coupling of host and pathogen gene flow herein, host connectivity generally 

plays a significant role in wildlife disease dynamics. Higher connectivity among habitat patches and 

increased host movements increase rates of pathogen spread, prevalence, and persistence in the A
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landscape (Becker, Snedden, Altizer, & Hall, 2018; Wilber, Johnson, & Briggs, 2020). However, 

wildlife populations themselves benefit similarly from increased connectivity, which is critical for 

maintaining genetic diversity and facilitating demographic rescue (Brown & Kodric-Brown, 1977; 

Keyghobadi, 2007; Whiteley, Fitzpatrick, Funk, & Tallmon, 2015). Thus, management of the 

landscape to isolate and constrain the spread of disease must be balanced against the need to maintain 

genetic and demographic exchange among wildlife populations (McCallum & Dobson, 2002). In light 

of increasing threats owing to habitat loss and wildlife disease globally (Haddad et al., 2015; Jones et 

al., 2008), this trade-off has become a major conundrum for wildlife managers. Any interventions 

should therefore proceed with caution and can benefit from comparative landscape genetic studies to 

help consider the impact of alternative management strategies. 
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Figure legends

Figure 1. The spread of DFTD across the island of Tasmania, with the approximate disease front over time 

depicted as red lines labelled by year. The site of the first documented case of DFTD is identified by the red circle. The 

12,000 km2 study area is shown within the box, with Narawntapu National Park (NNP) and West Pencil Pine (WPP) 

indicated.

Figure 2. Spatial distribution of population genetic structure in (A) Tasmanian devils and (B) DFTD tumors. For 

devils, relative STRUCTURE assignment probabilities for K = 2 genetic clusters are depicted as pie charts. For tumors, 

genetic clusters as determined by combined STRUCTURE and DAPC analyses are depicted, with samples for which 

analyses were incongruent shown as being of ambiguous cluster assignment.

Figure 3. Population structure is evident in both Tasmanian devils (top) and DFTD (bottom). STRUCTURE 

genetic assignment probabilities are shown for K = 2, showing both full (right) and paired host-tumor (left) sets. Each 

column represents an individual devil or tumor sample, with genetic clusters indicated by color and the relative 

proportions of each color representing a sample’s relative probability of membership of each genetic cluster. Tumor 

cluster 1 is indicated in blue and tumor cluster 2 is indicated in orange. Samples are arranged along the x-axis from west-

to-east.

Figure 4. Tests of Tasmanian devil and DFTD tumor co-structuring, with logistic regression (A) suggesting that 

host genetic cluster assignment broadly predicts tumor genetic cluster, but with a Mantel test (B) showing no correlation 

between devil and tumor individual genetic distances (1 – DPS). Removal of left-tail outlier in panel B Mantel test 

produced negligible change in result.
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Tables

Table 1. Results from the Evanno method showing relative support for STRUCTURE models of varying numbers of 

genetic clusters (K) in Tasmanian devils and DFTD. Optimal K was determined according to the model with the highest 

ΔK, together with assessment of mean natural logarithm of the probability of the data (Ln Pr(X|K), and is shown in bold 

typeface.

 K Reps Mean Ln Pr(X|K) Stdev LnP(K) ΔK

Devil

1 10 -1025607.12 4.90 -

2 10 -1005918.67 4.55 3339.52

3 10 -1001419.28 9.87 180.47

4 10 -998701.25 37.17 30.84

5 10 -997129.52 2514.96 -

Tumor

1 10 -93561.09 0.31 -

2 10 -91383.05 22.36 271.29

3 10 -95270.47 6058.33 1.40

4 10 -90660.12 503.25 24.24

 5 10 -98251.00 23635.46 -

Table 2. Linear mixed effect models with maximum likelihood population effects testing the influence of landscape 

resistance variables on genetic differentiation in devils, tumors, and tumor clusters 1 and 2. Model performance was 

evaluated by AICc averaged over 1,000 bootstrap iterations, with models with ∆AICc < 2 highlighted. Marginal R2 (mR2) 

is the proportion of overall variation explained by the model fixed effects and % Top Model is the percentage of times the 

model was the top performing model over 1,000 bootstraps, as determined by AICc support.

 Variable K AICc ΔAICc mR2
% Top 

Model

Roads 5 -7364.67 0.00 0.379 38.4
Devils

Precip. seasonality 4 -7359.56 4.66 0.269 1.7

 

(a)
 

(b)

 

(a)

 

(b)
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Elevation relief ratio 4 -7358.72 5.49 0.253 6.8

Temp. annual range 4 -7357.35 6.87 0.255 0.0

Distance 2 -7357.64 5.97 0.249 52.7

Elevation 4 -7357.35 6.86 0.253 0.1

Annual precip. 4 -7355.11 9.11 0.255 0.0

Land cover 13 -7322.04 50.90 0.319 0.3

Elevation 4 -7083.89 0.00 0.015 67.7

Precip. seasonality 4 -7082.19 1.70 0.030 30.5

Annual precip. 4 -7080.23 3.67 0.020 1.4

Elevation relief ratio 4 -7072.25 11.64 0.012 0.3

Distance 2 -7070.41 13.48 0.009 0.1

Temp. annual range 4 -7069.27 14.62 0.006 0.0

Land cover 13 -7067.75 16.14 0.024 0.0

All tumors

Roads 5 -7065.33 18.57 0.009 0.0

Elevation relief ratio 4 -7627.07 0.00 0.026 77.2

Annual precip. 4 -7625.59 1.48 0.019 11.5

Precip. seasonality 4 -7624.56 2.51 0.016 4.6

Distance 2 -7624.19 2.88 0.009 6.4

Elevation 4 -7623.73 3.35 0.021 0.2

Temp. annual range 4 -7623.67 3.40 0.009 0.0

Roads 5 -7622.07 5.01 0.020 0.1

Tumor 

cluster 1

Land cover 13 -7616.24 10.83 0.016 0.0

Elevation 4 -7972.78 0.00 0.025 77.6

Annual precip. 4 -7969.02 3.76 0.043 2.1

Elevation relief ratio 4 -7967.41 5.37 0.044 10.3

Precip. seasonality 4 -7965.74 7.04 0.024 8.6

Distance 2 -7959.39 13.39 0.007 0.5

Tumor 

cluster 2

Roads 5 -7958.98 13.80 0.047 0.9A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Land cover 13 -7957.66 15.12 0.053 0.0

Temp. annual range 4 -7958.77 14.01 0.006 0.0
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Table 3. Summary of top generalized dissimilarity models explaining genetic distances in devils, all DFTD tumors, and 

DFTD clusters separately. % deviance explained refers to the reduction in model deviance relative to the null. % model 

deviance explained refers to the percent change in model deviance upon permutation of a given variable.

 
% deviance 

explained
Variable

Variable 

significance (P)

% model deviance 

explained

Geographic distance 0.00 1.84

Elevation relief ratio - -

Elevation - -

Precip. seasonality 0.47 0.90

Annual precip. 0.08 7.64

Devils 11.87

Temp. annual range 0.25 3.17

Geographic distance 0.00 0.00

Elevation relief ratio 0.99 0.00

Elevation 0.00 99.95

Precip. seasonality - -

Annual precip. - -

All tumors 6.67

Temp. annual range - -

Geographic distance 0.01 0.00

Elevation relief ratio 0.07 38.96

Elevation 0.03 44.81

Precip. seasonality - -

Annual precip. - -

Temp. annual range - -

Tumors with 

matched host 

samples

5.50

Host genetic distance - -

Tumor cluster 1 No significant model

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Geographic distance 0.11 0.00

Elevation relief ratio 0.47 7.07

Elevation 0.02 93.36

Precip. seasonality - -

Annual precip. - -

Tumor cluster 2 4.66
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