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Tasmanian devils (Sarcophilus harrisii) are evolving in response to a unique
transmissible cancer, devil facial tumour disease (DFTD), first described
in 1996. Persistence of wild populations and the recent emergence of a
second independently evolved transmissible cancer suggest that transmissi-
ble cancers may be a recurrent feature in devils. Here, we compared
signatures of selection across temporal scales to determine whether genes
or gene pathways under contemporary selection (six to eight generations)
have also been subject to historical selection (65–85 Myr). First, we used
targeted sequencing, RAD-capture, in approximately 2500 devils in six
populations to identify genomic regions subject to rapid evolution. We
documented genome-wide contemporary evolution, including 186 candi-
date genes related to cell cycling and immune response. Then we used a
molecular evolution approach to identify historical positive selection in
devils compared to other marsupials and found evidence of selection in
1773 genes. However, we found limited overlap across time scales, with
only 16 shared candidate genes, and no overlap in enriched functional
gene sets. Our results are consistent with a novel, multi-locus evolutionary
response of devils to DFTD. Our results can inform conservation by identi-
fying high priority targets for genetic monitoring and guiding maintenance
of adaptive potential in managed populations.
1. Introduction
Species are subject to selection by pathogens throughout their evolutionary
history, shaping lineage diversification and leading to complex cellular and
molecular defensive mechanisms [1]. Still, emerging infectious diseases (EIDs)
can cause mass mortality and, given sufficient reproduction and genetic
variation, initiate rapid adaptive evolution in a naive host population [2].
Although the prevalence and severity of EIDs in wildlife populations is now
well recognized [3–6], we are just beginning to understand the evolutionary
impacts of disease in wildlife. We have a relatively short recorded history of
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Figure 1. (a) Map of the six contemporary sampling locations relative to disease prevalance over time (red lines) with the year of first detection labled at each site.
(b) Reduced, unrooted time-calibrated phylogeny [26] of marsupials used to estimate genome-wide historical selection on the devil lineage with estimated diver-
gence times (Ma) indicted along edges. Devil cartoon by David Hamilton. Wallaby, koala and opossum digital images retrieved from http://www.shutterstock.com/
amplicon. From top to bottom: The tammar wallaby (Notamacropus eugenii), koala (Phascolarctos cinereus), Tasmanian devil (Sarcophilus harrisii) and South
American grey-tailed opossum (Monodelphis domestica). (Online version in colour.)
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infectious disease in wildlife, and therefore a limited ability to
predict outcomes or intervene when warranted [7,8].

High-throughput DNA-sequencing techniques and high-
quality annotated reference genomes have revolutionized
our ability to monitor and identify mechanisms of evolution-
ary responses to pathogens [8–10]. Interspecific comparisons
of non-synonymous and synonymous variation (dN/dS)
within protein-coding regions have long been used to ident-
ify positive selection at immune-related loci [11–13]. At the
population level, rapid evolution in response to disease can
be detected by tracking changes in allele frequency before,
during and after the outbreak of disease [14,15]. Intra-specific
comparisons across populations can reveal to what extent the
evolutionary response to disease is constrained by limited
genetic mechanisms or variation for adaptation [16]. Reduced
representation techniques such as restriction-site associated
DNA-sequencing (RADseq) [17] have made the acquisition
of genome-wide, time-series genetic data more accessible in
non-model systems [18]. By integrating these resources and
tests of selection at differing temporal scales, we can assess
whether species that show rapid evolution in response to
contemporary pathogens also show evidence of historical
selection to similar pathogens.

A striking example of an EID acting as an extreme
selective force in wildlife is devil facial tumour disease
(DFTD), a transmissible cancer first described in 1996
afflicting wild Tasmanian devils (Sarcophilus harrisii) [19].
Tasmanian devils are the largest extant carnivorous marsu-
pial, with contemporary wild populations restricted to the
Australian island of Tasmania. As a transmissible cancer,
DFTD tumour cells are transmitted between hosts, behaving
as a pathogen [20]. Transmission typically occurs as devils
bite each other during the mating season after devils have
reached sexual maturity [21,22]. With few notable exceptions
documenting regression [23], DFTD tumours escape recog-
nition, become malignant, and can kill their hosts within
six months [24]. Starting from a single Schwann cell origin
[25], DFTD has now swept across nearly the entire species
range (figure 1a). Devil populations have declined species-
wide approximately 80% [27] with local declines in excess
of 90% [28]. Nonetheless, population genomic studies have
shown that devils are rapidly evolving in response to DFTD
[2,29,30], and DFTD has been spontaneously cleared (i.e.
regressed) in some individuals [23]. Long-term field studies
and simulation modelling have predicted that cyclical coexis-
tence or DFTD extirpation are more likely scenarios than
devil extinction [31]. This is particularly alarming because
devils have notoriously low genome-wide diversity, attributed
to climate- and anthropogenic-induced bottlenecks [32–34].
Depleted genetic diversity at immune-related loci has
probably further contributed to DFTD vulnerability [35].

Despite transmissible cancers being exceedingly rare
across animals, a second independent transmissible cancer
in devils, DFT2, was described in 2014 [36,37]. Comparative
and functional analyses of DFTD and DFT2 showed similar
drivers of cancerous mutations and tissue type of origin
[38]. Low genetic diversity, chromosomal fragility [39], a
reportedly high incidence of non-transmissible neoplasms
[40] and injury-prone biting behaviour [41] may contribute
to a predisposition to transmissible cancers in devils [42].
These findings suggest that transmissible cancers may be a
recurring selective force in the Tasmanian devil lineage. If
so, this leads to the hypothesis that the genes and genetic
pathways associated with the ongoing evolutionary response
to DFTD may have experienced recurrent historical selection
in the devil lineage from previous transmissible cancers.

Because of the threat of DFTD and DFT2 to devil
populations, there are ongoing conservation efforts, including
the establishment of a captive devil insurance meta-population.
The insurance population is managed to maintain genome-
wide genetic diversity and serve as a source for re-introductions
in an effort to increase genetic diversity and size of wild
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Table 1. Number of adults sampled before and after the year of first detection of DFTD at each site. See electronic supplementary material, table S1 for sample
size for each year at each locality.

location year of first detection samples before samples after total

wukalina/Mt William 1996 0 155 155

Freycinet 2001 300 382 682

Forestier 2004 131 552 683

Fentonbury 2005 99 169 268

West Pencil Pine 2006 52 348 400

Narawntapu 2007 224 150 374

total 806 1756 2562
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populations [43]. To inform conservation efforts, it is important
to understand what types of genetic variation in natural popu-
lations may allow for evolutionary rescue from disease and
maintain adaptive potential for future threats [44]. Given evi-
dence for rapid evolution in response to DFTD, monitoring of
genetic variation at candidate adaptive loci could help evaluate
adaptive potential of wild populations [44,45]. In heavily man-
aged (e.g. captive) populations, loci associated with an adaptive
response to disease could be included in genotyping panels for
maintaining genetic diversity [46].

Here we identify targets of selection and signatures of
adaptation at both contemporary (6–8 generations) and
historical (65–85 Myr) scales in Tasmanian devils. First we test
for evidence of contemporary genomic response to selection
by genotyping thousands of individuals sampled at several
time points across six populations, using RAD-capture [47] to
target nearly 16 000 loci [48]. Next we identify signatures of
historical selection in the devil lineage by comparing across
marsupial species with annotated genomic sequence data.
Then, we test for evidence of recurrent selection by examining
shared contemporary and historical signatures of selection, in
terms of specific loci, genes or functional genetic pathways.

If transmissible cancer is a novel selective force acting on
Tasmanian devils, we expect that genes under contemporary
selection by DFTD will be different from those with a
signature of historical positive selection. Alternatively, if
transmissible cancer is a recurrent selective force in the
devil lineage that targets the same set of genes repeatedly,
we may expect a conserved response among populations
and an overrepresentation of the same genes or pathways
under both contemporary and historical selection. However,
if there are multiple, redundant, genetic pathways that
could be involved in a response to recurrent transmissible
cancers, we may expect a novel response across contempor-
ary populations and little overlap between contemporary
and historical time scales. These alternatives can inform
conservation efforts to manage genetic diversity for resilience
in natural devil populations, and any genes or functional
pathways that show both contemporary and historical
selection may be relevant to cancer resistance more broadly.
2. Material and methods
(a) Contemporary selection
We used the RAD-capture method (combining RADseq and
sequence capture) [47] to conduct targeted genotyping of
single-nucleotide polymorphisms (SNPs) across 2562 unique
individuals from multiple Tasmanian devil populations,
sampled both before and after DFTD appeared in each popu-
lation (figure 1a and table 1; electronic supplementary material,
table S1) [30,49]. Animal use was approved under the
Institutional Animal Care and Use Committee (IACUC
ASAF#04392) at Washington State University and Animal
Ethics Committee (A0008588, A0010296, A0011696, A0013326,
A0015835) at University of Tasmania. We constructed RAD-
capture libraries following Ali et al. [47], using the restriction
enzyme PstI and a capture array targeting 15 898 RAD loci
selected for membership in one of three functional categories:
(1) those showing signatures of DFTD-related selection from
previous work [2], (2) loci close to genes with known cancer or
immune function, and (3) loci widely distributed across the
genome (See [30,48] for more details on the devopment of this
array.). See electronic supplementary material, S1 for multiplex-
ing, read processing and SNP genotyping details.

To account for the expected high rates of genetic drift
within populations, we used a composite statistic to compare
signatures of selection across populations. We identified candi-
date SNPs as the top 1% of a de-correlated composite of
multiple signals (DCMS) score [50], which combined the
results of three analyses: change in allele frequency in each
population after DFTD (Δaf ), and two methods that estimate
strength of selection from allele frequencies at multiple time
points in multiple populations, the method of Mathieson &
McVean [14] (mm), which allows the estimated selection coef-
ficient to vary over space; and spatpg [15], which allows the
selection coefficient to vary over time and space. Individuals
were assigned to generational-cohorts based on their estimated
years of birth (electronic supplementary material, table S1). We
estimated Δaf for five locations at which we had sampling both
before and after DFTD was prevalent, according to DNA col-
lection date and estimated date of birth, combining multiple
cohorts when applicable (table 1; electronic supplementary
material, table S1). Both time-series methods (mm and spatpg)
incorporate estimates of effective population size, which
ranged from 26 to 37 according to a two-sample temporal
method [51,52] (electronic supplementary material, table S3).
DCMS reduces the signal-to-noise ratio by combining
p-values from different tests at each SNP while accounting
for genome-wide correlation among statistics. We included
SNPs with results from at least 11 of the 12 individual tests
(Δaf for five populations, mm for all six populations and
spatpg) and weighted based on the statistics with results at
that SNP. To characterize the role of standing genetic variation
in rapid evolution [53], we visualized the initial allele frequen-
cies of each population for each analysis of contemporary
evolution (electronic supplementary material, figures S2 and
S9). We evaluated repeatability among populations by com-
paring population-specific p-values of Δaf and mm with the R
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package dgconstraint for a similarity index called the C-score,
where 0 indicates no similarity between populations [16]. See
electronic supplementary material, S1 for details of each
analysis.

(b) Historical selection
We combined existing genomic resources for the South American
grey-tailed opossum (Monodelphis domestica) [54] and tammar
wallaby (Notamacropus eugenii) [55] from the Ensembl database
[56] and the recently published transcriptome assembly of
the koala (Phascolarctos cinereus) [57] to identify genome-wide
signatures of positive selection in devils, relative to these other
species using the branch-site test of PAML (phylogenetic analy-
sis by maximum likelihood) [58,59]. We compiled alignments of
orthologous genes and reduced the marsupial time-calibrated
phylogeny of Mitchell et al. [26] to those species for which
annotated full genomes are available (figure 1b). The branch-
site test compares likelihood scores for two models which
estimate dN/dS among site classes of a multi-sequence align-
ment, allowing dN/dS to exceed 1 (positive selection) in a
proportion of sites along a single branch in the alternative
model. We reduced the potential for false positives by filtering
any putative orthologues with extreme sequence divergence
(S > 2), measured as the sum of synonymous mutations per
gene (S), and ensuring alignments of nucleotides were longer
than 100 bp [60,61]. We identified historical candidates with
the likelihood-ratio test, comparing the likelihoods of the
alternative and neutral models with 1 d.f. and α = 0.05. Historical
candidates were those with estimates of dN/dS > 1 along the
devil branch and FDR > 0.05 after correcting for multiple testing
[62]. See electronic supplementary material, S1 for details regard-
ing orthology identification and PAML implementation.

(c) Recurrent selection
We refer to genes under both contemporary and historical selec-
tion as candidates for recurrent selection. To test whether genes
under contemporary selection differed from genes under histori-
cal selection, we first tested for significant overlap with Fisher’s
one-tailed test. To test for differences in the strength of selection,
we compared the distributions of dN/dS and the proportion of
sites per gene found under positive selection among candidates
for recurrent selection to all other historical candidates from
the genome-wide background using non-parametric tests of
equality, the Kolmogorov–Smirnov test [63], which is more
sensitive to the centre of the distributions, and the Anderson–
Darling test [64], which is more sensitive to extreme values of
the distribution and often has more power. To identify and
compare key mechanisms of adaptation among candidate
genes from each set, we used gene ontology (GO) term enrich-
ment analysis using the SNP2GO package [65], the PANTHER
web-interface [66], and in gene sets of the molecular signatures
database (MsigDB), using the subset of genes tested for each
test as the respective background set [67]. We capitalized
on the wealth of ongoing research in devils and DFTD by
comparing our contemporary and historical candidates to those
previously identified using different datasets and analytical
approaches [2,29,30,48,68]. See electronic supplementary
material, S1 for details of these comparisons.
3. Results
(a) Genomic data
To test for contemporary selection, we sampled a total of 2562
individuals across six localities of Tasmania before and
after DFTD prevalence (table 1 and figure 1a; electronic
supplementary material, table S1), with a RAD-capture
array [48]. After filtering, we mapped a total of 517.7 million
reads against targeted loci. The mean final coverage of tar-
geted loci was 14.8×, with 76.6% of all samples having
coverage of at least 5× (electronic supplementary material,
figure S1). After filtering, we retained 14 585–22 878 SNPs
for downstream analysis, depending on the sampled time
point and population.

(b) Evidence for contemporary selection
Among each elementary test for selection signatures, 161–232
SNPs (depending on population) were in the top 1% of allele
shifts following disease (Δaf ), 209–217 were in the top 1% of
mm scores, and 213 were in the top 1% of spatpg scores (elec-
tronic supplementary material, table S4, figures S7–S8).
Across populations and elementary tests for contemporary
selection (Δaf, mm, spatpg), p-values were not correlated
(Pearson’s r < 0.155 for all tests; electronic supplementary
material, figure S10). The computed repeatability indexes for
population-specific responses Δaf and mm were CΔaf = 4.86
( p = 1 × 10−4) and Cmm = 3.72 ( p = 1 × 10−4), which implies a
low, but significant level of repeatability [16]. In the top 1%
of DCMS scores (greater than or equal to 1.167), we identified
144 candidate SNPs for contemporary selection by DFTD; of
these, 79 had annotated genes (186 total) within 100 kb
(figure 2; electronic supplementary material, table S5). The
initial frequencies for candidate SNPs were not consistently
skewed toward intermediate frequencies across all popu-
lations (electronic supplementary material, figure S9). The
skew we observed in a few populations (e.g. Fentonbury,
Narawntapu) may reflect differences in the power to detect
selection with low versus intermediate minor allele frequen-
cies within those populations, or possibly other factors such
as balancing selection [53].

Comparing our contemporary candidates and those
previously identified in devils with selection and genome-
wide association analyses [29,30,48,68], we found many
overlapping genes (discussed below). Notably, we found sig-
nificant enrichment of candidates previously associated with
DFTD-related phenotypes in females (14 genes, p = 4.2 × 10−8,
odds ratio = 7.3) [48]. GO enrichment analysis found middle
ear morphogenesis (GO:0042474) significantly enriched
among contemporary candidate SNPs (FDR < 0.05). Five can-
didate SNPs were within the 100 kb window of two genes
associated with this term: EYA1 and PRKRA. Both EYA1
and PRKRA are involved in cell proliferation and migration
and implicated in tumour suppression and angiogenesis
[69–71].

(c) Evidence for historical selection
Of the 18 788 genes annotated in the devil reference genome,
6193 had 1-to-1 orthologues in at least three of the four
marsupial genomes and an appropriate sequence divergence
(S < 2). Using the branch-site test for positive selection in
PAML, we found a total of 1773 genes to be candidates for
historical positive selection (electronic supplementary
material, table S6). Estimates of dN/dS spanned the full
range of possible values, from 1.05 to 999 and proportion of
sites with substitutions per gene ranged from 0.01 to 0.78
(figure 3). The majority of genes were classified as having a
molecular function of binding (GO:0005488) or catalytic
activity (GO:0003824); a plurality involved in cellular
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processes (GO:0009987) or biological regulation (GO:0065007);
and a plurality as participating in the Wnt signalling
pathway (P00057). None of these pathway classifications
were significantly enriched.

(d) Recurrent selection
Of the 186 contemporary candidate genes, 68 had 1-to-1
orthologues among the four marsupials and were tested
for historical selection. Sixteen genes showed evidence of
historical selection and are thus candidates for recurrent
selection (dN/dS > 1, FDR < 0.05; electronic supplementary
material, table S6). Contemporary candidates were not
enriched for historical selection according to Fisher’s test
(Odds ratio = 0.0, p = 1). Among the 16 recurrent candidates,
dN/dS estimates spanned 15.7–999 and proportion of sites
per gene 0.01–0.25 (figure 3). According to the Anderson–
Darling and Kolmogorov–Smirnov tests of equality, neither
distributions of dN/dS estimates (figure 3a; A.D. p= 0.86; K.S.
p= 0.58), nor proportion of sites (figure 3b; A.D. p= 0.49; K.S.
p= 0.48) differed between candidates for recurrent selection
(in black) and historical candidates (in red).

After correcting gene set enrichment for multiple testing
(FDR < 0.05) and requiring at least 10 genes in the back-
ground set, we did not find functional enrichment of any
MSigDB gene sets among recurrent candidates or shared
between both contemporary and historical sets. Importantly,
the permutation test of shared gene sets found fewer shared
between historical and contemporary selection than expected
by chance ( p < 0.001; electronic supplementary material,
figure S11).
4. Discussion
(a) Contemporary responses to DFTD
Using a targeted set of nearly 16 000 loci, we detected wide-
spread evidence of a response to selection by DFTD across
the Tasmanian devil genome. Our results extend previous
work that has shown genomic evidence of a response to
DFTD in wild populations [2,29,30,72]. Here we greatly
increased the sample size of individuals and genetically inde-
pendent populations for greater power, resulting in strong
evidence of a response to selection widely distributed
across the genome. We found greater similarity across popu-
lations within analytical approaches than among methods
within populations and relatively low, but significant repeat-
ability across populations. This result is consistent with rapid,
polygenic evolution facilitated by selection for standing vari-
ation within populations that was present prior to disease
arrival. This time scale (three to eight generations) would
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likely be too short for new mutations or migration to play a
substantial role in DFTD response, and genetic variation is
shared across the species range, despite geographical popu-
lation structure [30,73].

In line with previous population genomic studies
[2,29,30,48,68], our analysis of contemporary evolution
detected a putatively adaptive response related to the
immune system, cell adhesion and cell-cycle regulation (elec-
tronic supplementary material, table S5). Our GO enrichment
result for middle ear development (GO:0042474) among
contemporary candidates may highlight selection for inter-
actions with the peripheral nervous system and cell
proliferation. Genes annotated with nervous system associ-
ations may indicate selection for behavioural changes [29],
or highlight importance and vulnerability of peripheral
nerve repair by Schwann cells in devils, given the prevalence
of biting and Schwann cell origin of DFT [42]. Significant
overlap for genes associated with devil infection status
(case-control), age, and survival [48] among our contempor-
ary candidates is a strong indicator that these contemporary
candidates likely confer relevant phenotypic change. We
also confirmed five (CRBN, ENSSHAG00000007088, THY1,
USP2, C1QTNF5) of seven candidates identified previously
[2] in a genome scan for loci under selection from DFTD in
three of the same populations (Freycinet, Narawntapu and
West Pencil Pine). By contrast, we identified those five and
only two more (TRNT1 and FSHB) of 148 candidates from
a re-analysis of that same dataset which studied popu-
lation-specific responses [29].

Among genes that have been associated with host vari-
ation responsible for tumour regression on devils [68,74],
we found only JAKMIP3, a Janus kinase and microtubule
binding protein [74], in our list of contemporary candidates.
However, we found devil regression candidates TL11,
NGFR and PAX3, which encodes a transcription factor associ-
ated with angiogenesis [75]; as well as GAD2, MYO3A and
unannotated ENSSHAG00000009195 [74], among popu-
lation-specific candidates for allele frequency change (Δaf ),
possibly reflecting differences in test sensitivities. Overall,
the paucity of candidates shared between our contemporary
analysis and regression studies suggests that regression may
not be the dominant form of phenotypic response to DFTD;
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to date tumour regression has only been detected in a few
populations [74] not represented in our study.

(b) Historical selection in the devil lineage
With our genome-wide molecular evolution approach [58],
we found widespread historical positive selection across the
devil genome in about 28% of all 6249 orthologues tested
(electronic supplementary material, table S6). The branch-
site test is known to be less conservative than related
models, particularly when divergence among species is
large [76], but the rates of historical selection we found in
devils are similar to those described in other taxa (e.g. 23%
of genome-wide orthologues among 39 avian species using
a similar approach) [13].

We did not find preferential positive selection for immu-
nity-related genes, as has been shown in primates [1],
eutherian mammals more generally [77] and birds [13].
Instead, we found the highest proportion of pathways
under historical selection to be functionally classified within
the Wnt pathway, a signalling cascade regulating cell
adhesion and implicated in carcinogenesis [78]. As genomic
resources grow and improve in marsupials [10], interspecific
analyses for positive selection at finer scales may reveal more
recent and specific selection targets in Tasmanian devils. Our
ability to detect historical selection due to transmissible
cancer in devils could be improved by genome assembly
efforts among more closely related Dasyuridae, as well as
complementary annotation.

(c) Comparing contemporary and historical time scales
Remarkably few transmissible cancers have been discovered
in nature [79,80], and yet two of those independent clonally
transmitted cancers have been discovered in Tasmanian
devils in less than 20 years. This and the observed rapid evol-
utionary response to disease suggest that transmissible
cancers may be a recurrent event in devils. We found no sig-
nificant overlap of historical and contemporary selection at
either individual genes or functional gene sets. This does
not rule out the possibility of prior transmissible cancers in
devils; but it suggests that if transmissible cancers have
been a recurrent feature of devil evolution prior to DFTD,
they did not generally impose selection on the same set of
genes or genetic pathways that show a contemporary
response to DFTD. Nonetheless, the 16 candidate genes
showing both historical and contemporary evidence for
selection (electronic supplementary material, table S7) raise
interesting targets for understanding adaptively important
variation in devils.

The 16 candidate genes for recurrent selection (electronic
supplementary material, table S7) are generally related to
three main themes: transcription regulation, the nervous
system and the centrosome. Four of these candidates for
recurrent selection were previously associated with disease-
related phenotypes [48]. We additionally found 82 historical
candidates previously identified in the top 1% of SNPs
associated with disease-related phenotypes with three rep-
resented in the top 0.1% associated with large effect sizes
for female case-control and survival [48]. This overlap
lends support to the hypothesis of recurrent selection by
transmissible cancers, but was not significant ( p = 1, odds
ratio = 0). Both our contemporary selection analysis and the
genome-wide association study (GWAS) approach used by
Margres and colleagues [48] are statistically limited by
small populations, sample size and the time scale over
which DFTD-related selection has occurred. By considering
the complement of these results together, the overlapping
historical, GWAS, and contemporary candidates may still be
targets of recurrent selection along similar functional axes,
potentially including transmissible cancer.

The low prevalence of candidates for recurrent selection
and lack of shared functional gene set enrichment between
both contemporary and historical signatures of selection
suggest a novel response to DFTD compared to historic
selection in the devil lineage. However, there are alternative
hypotheses. For example, there could be redundancy in
genetic mechanisms underlying resistance to transmissible
cancers, potentially as a result of repeated selection for resist-
ance, allowing selection to act across many loci [81]. That is,
the low genetic diversity observed in devils could be the
result of widespread historical purifying selection resulting
from transmissible cancers or other diseases [82], or historical
bottlenecks due to climate change and habitat loss [32–34],
that prevent a response to selection under DFTD at loci that
are still associated with disease phenotypes.

The widespread contemporary evolution we found in
devils reflects the recent prediction [83] that response to an
emergent disease is most likely to be controlled by many
genes conferring quantitative resistance [84], for example,
by reducing the within-host growth rate of tumours. DFTD
is predicted to become less virulent in the short-term
[31,85]. If DFTD persists long-term in the devil population
with ongoing coevolution, it may lead to diversifying selec-
tion for specific, qualitative host resistance mechanisms [83].
Indeed, phylodynamic analysis of DFTD as it spread across
Tasmania supports the hypothesis that devils may be mount-
ing a response; transmission rates have decayed such that
DFTD appears to be shifting from emergence to endemism
[85]. Although host-genomic variation was not jointly con-
sidered in that study, the combined evidence of multiple
studies demonstrating rapid evolutionary response of devils
to DFTD, including this one, support these interpretations.
(d) Conservation implications
Calls have been made to consider the historical context of
adaptation when proposing conservation management sol-
utions based on genomic results [86]. Our analysis of
historical selection largely supports the hypothesis that
DFTD is a newly emerging and novel selective force, dis-
tinctly shaping today’s remaining wild devils. The targets
of novel selection that we identified (figure 2; electronic sup-
plementary material, table S4) and their functional roles
should be considered for prioritization of monitoring and
conservation in light of DFTD. At the same time, the wide
distribution of contemporary candidates across the genome
also highlights the importance of standing genetic variation
to continue to respond to unique selective forces, including
local environmental factors [30]. Genomic monitoring could
be useful for maintaining both functional diversity at candi-
date loci and genome-wide variation in captive populations
[46,87,88] and in the wild. Multiple genomic tools are
available for targeted monitoring of large sets of loci (e.g.
[89,90]) and could be used to track adaptive evolution and
potential in the form of genetic diversity [44]. However,
before management decisions are made for specific genes,
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further work would need to identify favoured alleles and fit-
ness effects for the genes we identified (electronic
supplementary material, table S5).

DFTD has yet to reach devils in the far west (figure 1a) and
continues to circulate throughout the island. To maintain long-
term adaptive capacity in the face of similar recurrent selective
forces including DFT2 and potential future transmissible
cancers, our results warrant (1) the monitoring of genetic vari-
ation in broad functional groups and (2) management
strategies to maintain genetic diversity across those broad
groups. Although these populations were not subject to
DFT2 at the time of writing, an important and interesting
future direction should examine the evolutionary response
to DFT2 and could compare loci under selection by the two
independent transmissible cancers. This study could provide
a list of candidate loci for development of a genotyping
panel for either purpose, with flexibility to target many or
fewer loci. At the same time, given urgent and unpredictable
present-day threats including not just emerging diseases but
environmental change and population fragmentation, it is
important that monitoring and population management also
focus on maintaining genetic variation across the genome.
7

5. Conclusion
Our results suggest that the contemporary evolutionary
response to DFTD is mostly novel compared to the
genome-wide signature of historical selection. Comparing
the degree of overlap and distributions among contemporary
and historical candidates did not support recurrent selection
on a common set of genes in response to transmissible cancer.
Our work contributes to mounting evidence of possible
mechanisms by which devil populations are persisting and
rapidly evolving in the face of DFTD despite overall low gen-
etic diversity and population bottlenecks [2,23,48,72,91].
Broadly, this type of approach can be applied to analyses of
novel threats in wildlife populations in the current era of
anthropogenic global change to guide monitoring and man-
agement actions focused on genetic adaptive potential.
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